School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Establishment of Wolbachia Strain wAlbB in Malaysian Populations of Aedes aegypti for Dengue Control
    Nazni, WA ; Hoffmann, AA ; NoorAfizah, A ; Cheong, YL ; Mancini, MV ; Golding, N ; Kamarul, GMR ; Arif, MAK ; Thohir, H ; NurSyamimi, H ; ZatilAqmar, MZ ; NurRuqqayah, M ; NorSyazwani, A ; Faiz, A ; Irfan, F-RMN ; Rubaaini, S ; Nuradila, N ; Nizam, NMN ; Irwan, SM ; Endersby-Harshman, NM ; White, VL ; Ant, TH ; Herd, CS ; Hasnor, AH ; AbuBakar, R ; Hapsah, DM ; Khadijah, K ; Kamilan, D ; Lee, SC ; Paid, YM ; Fadzilah, K ; Topek, O ; Gill, BS ; Lee, HL ; Sinkins, SP (CELL PRESS, 2019-12-16)
    Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates.
  • Item
    Thumbnail Image
    Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus (vol 4, pg 854, 2019)
    Kraemer, MUG ; Reiner, RC ; Brady, OJ ; Messina, JP ; Gilbert, M ; Pigott, DM ; Yi, D ; Johnson, K ; Earl, L ; Marczak, LB ; Shirude, S ; Weaver, ND ; Bisanzio, D ; Perkins, TA ; Lai, S ; Lu, X ; Jones, P ; Coelho, GE ; Carvalho, RG ; Van Bortel, W ; Marsboom, C ; Hendrickx, G ; Schaffner, F ; Moore, CG ; Nax, HH ; Bengtsson, L ; Wetter, E ; Tatem, AJ ; Brownstein, JS ; Smith, DL ; Lambrechts, L ; Cauchemez, S ; Linard, C ; Faria, NR ; Pybus, OG ; Scott, TW ; Liu, Q ; Yu, H ; Wint, GRW ; Hay, SI ; Golding, N (NATURE PUBLISHING GROUP, 2019-05)
    This Article was mistakenly not made Open Access when originally published; this has now been amended, and information about the Creative Commons Attribution 4.0 International License has been added into the 'Additional information' section.
  • Item
    Thumbnail Image
    Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus (vol 4, pg 854, 2019)
    Kraemer, MUG ; Reiner, RC ; Brady, OJ ; Messina, JP ; Gilbert, M ; Pigott, DM ; Yi, D ; Johnson, K ; Earl, L ; Marczak, LB ; Shirude, S ; Weaver, ND ; Bisanzio, D ; Perkins, TA ; Lai, S ; Lu, X ; Jones, P ; Coelho, GE ; Carvalho, RG ; Van Bortel, W ; Marsboom, C ; Hendrickx, G ; Schaffner, F ; Moore, CG ; Nax, HH ; Bengtsson, L ; Wetter, E ; Tatem, AJ ; Brownstein, JS ; Smith, DL ; Lambrechts, L ; Cauchemez, S ; Linard, C ; Faria, NR ; Pybus, OG ; Scott, TW ; Liu, Q ; Yu, H ; Wint, GRW ; Hay, SI ; Golding, N (NATURE PUBLISHING GROUP, 2019-05)
    In the version of this Article originally published, the affiliation for author Catherine Linard was incorrectly stated as '6Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK'. The correct affiliation is '9Spatial Epidemiology Lab (SpELL), Universite Libre de Bruxelles, Brussels, Belgium'. The affiliation for author Hongjie Yu was also incorrectly stated as '11Department of Statistics, Harvard University, Cambridge, MA, USA'. The correct affiliation is '15School of Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China'. This has now been amended in all versions of the Article.
  • Item
    Thumbnail Image
    A comparison of joint species distribution models for presence-absence data
    Wilkinson, DP ; Golding, N ; Guillera-Arroita, G ; Tingley, R ; McCarthy, MA ; Peres‐Neto, P (WILEY, 2019-02-01)
    1. Joint species distribution models (JSDMs) account for biotic interactions and missing environmental predictors in correlative species distribution models. Several different JSDMs have been proposed in the literature, but the use of different or conflicting nomenclature and statistical notation potentially obscures similarities and differences among them. Furthermore, new JSDM implementations have been illustrated with different case studies, preventing direct comparisons of computational and statistical performance. 2. We aim to resolve these outstanding issues by (a) highlighting similarities among seven presence–absence JSDMs using a clearly defined, singular notation; and (b) evaluating the computational and statistical performance of each JSDM using six datasets that vary widely in numbers of sites, species, and environmental covariates considered. 3. Our singular notation shows that many of the JSDMs are very similar, and in turn parameter estimates of different JSDMs are moderate to strongly, positively correlated. In contrast, the different JSDMs clearly differ in computational efficiency and memory limitations. 4. Our framework will allow ecologists to make educated decisions about the JSDM that best suits their objective, and enable wider uptake of JSDM methods among the ecological community.
  • Item
    Thumbnail Image
    Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus
    Kraemer, MUG ; Reiner, RC ; Brady, O ; Messina, JP ; Gilbert, M ; Pigott, DM ; Yi, D ; Johnson, K ; Earl, L ; Marczak, LB ; Shirude, S ; Weaver, N ; Bisanzio, D ; Perkins, TA ; Lai, S ; Lu, X ; Jones, P ; Coelho, GE ; Carvalho, RG ; Van Bortel, W ; Marsboom, C ; Hendrickx, G ; Schaffner, F ; Moore, CG ; Nax, HH ; Bengtsson, L ; Wetter, E ; Tatem, AJ ; Brownstein, JS ; Smith, DL ; Lambrechts, L ; Cauchemez, S ; Linard, C ; Faria, NR ; Pybus, OG ; Scott, TW ; Liu, Q ; Yu, H ; Wint, GRW ; Hay, S ; Golding, N (NATURE PORTFOLIO, 2019-05)
    The global population at risk from mosquito-borne diseases-including dengue, yellow fever, chikungunya and Zika-is expanding in concert with changes in the distribution of two key vectors: Aedes aegypti and Aedes albopictus. The distribution of these species is largely driven by both human movement and the presence of suitable climate. Using statistical mapping techniques, we show that human movement patterns explain the spread of both species in Europe and the United States following their introduction. We find that the spread of Ae. aegypti is characterized by long distance importations, while Ae. albopictus has expanded more along the fringes of its distribution. We describe these processes and predict the future distributions of both species in response to accelerating urbanization, connectivity and climate change. Global surveillance and control efforts that aim to mitigate the spread of chikungunya, dengue, yellow fever and Zika viruses must consider the so far unabated spread of these mosquitos. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes and thereby augment efforts to reduce arbovirus burden in human populations globally.
  • Item
    Thumbnail Image
    Utilizing general human movement models to predict the spread of emerging infectious diseases in resource poor settings
    Kraemer, MUG ; Golding, N ; Bisanzio, D ; Bhatt, S ; Pigott, DM ; Ray, SE ; Brady, OJ ; Brownstein, JS ; Faria, NR ; Cummings, DAT ; Pybus, OG ; Smith, DL ; Tatem, AJ ; Hay, SI ; Reiner, RC (NATURE PORTFOLIO, 2019-03-26)
    Human mobility is an important driver of geographic spread of infectious pathogens. Detailed information about human movements during outbreaks are, however, difficult to obtain and may not be available during future epidemics. The Ebola virus disease (EVD) outbreak in West Africa between 2014-16 demonstrated how quickly pathogens can spread to large urban centers following one cross-species transmission event. Here we describe a flexible transmission model to test the utility of generalised human movement models in estimating EVD cases and spatial spread over the course of the outbreak. A transmission model that includes a general model of human mobility significantly improves prediction of EVD's incidence compared to models without this component. Human movement plays an important role not only to ignite the epidemic in locations previously disease free, but over the course of the entire epidemic. We also demonstrate important differences between countries in population mixing and the improved prediction attributable to movement metrics. Given their relative rareness, locally derived mobility data are unlikely to exist in advance of future epidemics or pandemics. Our findings show that transmission patterns derived from general human movement models can improve forecasts of spatio-temporal transmission patterns in places where local mobility data is unavailable.
  • Item
    Thumbnail Image
    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017
    Burstein, R ; Henry, NJ ; Collison, ML ; Marczak, LB ; Sligar, A ; Watson, S ; Marquez, N ; Abbasalizad-Farhangi, M ; Abbasi, M ; Abd-Allah, F ; Abdoli, A ; Abdollahi, M ; Abdollahpour, I ; Abdulkader, RS ; Abrigo, MRM ; Acharya, D ; Adebayo, OM ; Adekanmbi, V ; Adham, D ; Afshari, M ; Aghaali, M ; Ahmadi, K ; Ahmadi, M ; Ahmadpour, E ; Ahmed, R ; Akal, CG ; Akinyemi, JO ; Alahdab, F ; Alam, N ; Alamene, GM ; Alene, KA ; Alijanzadeh, M ; Alinia, C ; Alipour, V ; Aljunid, SM ; Almalki, MJ ; Al-Mekhlafi, HM ; Altirkawi, K ; Alvis-Guzman, N ; Amegah, AK ; Amini, S ; Amit, AML ; Anbari, Z ; Androudi, S ; Anjomshoa, M ; Ansari, F ; Antonio, CAT ; Arabloo, J ; Arefi, Z ; Aremu, O ; Armoon, B ; Arora, A ; Artaman, A ; Asadi, A ; Asadi-Aliabadi, M ; Ashraf-Ganjouei, A ; Assadi, R ; Ataeinia, B ; Atre, SR ; Quintanilla, BPA ; Ayanore, MA ; Azari, S ; Babaee, E ; Babazadeh, A ; Badawi, A ; Bagheri, S ; Bagherzadeh, M ; Baheiraei, N ; Balouchi, A ; Barac, A ; Bassat, Q ; Baune, BT ; Bayati, M ; Bedi, N ; Beghi, E ; Behzadifar, M ; Behzadifar, M ; Belay, YB ; Bell, B ; Bell, ML ; Berbada, DA ; Bernstein, RS ; Bhattacharjee, NV ; Bhattarai, S ; Bhutta, ZA ; Bijani, A ; Bohlouli, S ; Breitborde, NJK ; Britton, G ; Browne, AJ ; Nagaraja, SB ; Busse, R ; Butt, ZA ; Car, J ; Cardenas, R ; Castaneda-Orjuela, CA ; Cerin, E ; Chanie, WF ; Chatterjee, P ; Chu, D-T ; Cooper, C ; Costa, VM ; Dalal, K ; Dandona, L ; Dandona, R ; Daoud, F ; Daryani, A ; Das Gupta, R ; Davis, I ; Weaver, ND ; Davitoiu, DV ; De Neve, J-W ; Demeke, FM ; Demoz, GT ; Deribe, K ; Desai, R ; Deshpande, A ; Desyibelew, HD ; Dey, S ; Dharmaratne, SD ; Dhimal, M ; Diaz, D ; Doshmangir, L ; Duraes, AR ; Dwyer-Lindgren, L ; Earl, L ; Ebrahimi, R ; Ebrahimpour, S ; Effiong, A ; Eftekhari, A ; Ehsani-Chimeh, E ; El Sayed, I ; Zaki, MES ; El Tantawi, M ; El-Khatib, Z ; Emamian, MH ; Enany, S ; Eskandarieh, S ; Eyawo, O ; Ezalarab, M ; Faramarzi, M ; Fareed, M ; Faridnia, R ; Faro, A ; Fazaeli, AA ; Fazlzadeh, M ; Fentahun, N ; Fereshtehnejad, S-M ; Fernandes, JC ; Filip, I ; Fischer, F ; Foigt, NA ; Foroutan, M ; Francis, JM ; Fukumoto, T ; Fullman, N ; Gallus, S ; Gebre, DG ; Gebrehiwot, TT ; Gebremeskel, GG ; Gessner, BD ; Geta, B ; Gething, PW ; Ghadimi, R ; Ghadiri, K ; Ghajarzadeh, M ; Ghashghaee, A ; Gill, PS ; Gill, TK ; Golding, N ; Gomes, NGM ; Gona, PN ; Gopalani, SV ; Gorini, G ; Goulart, BNG ; Graetz, N ; Greaves, F ; Green, MS ; Guo, Y ; Haj-Mirzaian, A ; Haj-Mirzaian, A ; Hall, BJ ; Hamidi, S ; Haririan, H ; Haro, JM ; Hasankhani, M ; Hasanpoor, E ; Hasanzadeh, A ; Hassankhani, H ; Hassen, HY ; Hegazy, MI ; Hendrie, D ; Heydarpour, F ; Hird, TR ; Hoang, CL ; Hollerich, G ; Rad, EH ; Hoseini-Ghahfarokhi, M ; Hossain, N ; Hosseini, M ; Hosseinzadeh, M ; Hostiuc, M ; Hostiuc, S ; Househ, M ; Hsairi, M ; Ilesanmi, OS ; Imani-Nasab, MH ; Iqbal, U ; Irvani, SSN ; Islam, N ; Islam, SMS ; Jurisson, M ; Balalami, NJ ; Jalali, A ; Javidnia, J ; Jayatilleke, AU ; Jenabi, E ; Ji, JS ; Jobanputra, YB ; Johnson, K ; Jonas, JB ; Shushtari, ZJ ; Jozwiak, JJ ; Kabir, A ; Kahsay, A ; Kalani, H ; Kalhor, R ; Karami, M ; Karki, S ; Kasaeian, A ; Kassebaum, NJ ; Keiyoro, PN ; Kemp, GR ; Khabiri, R ; Khader, YS ; Khafaie, MA ; Khan, EA ; Khan, J ; Khan, MS ; Khang, Y-H ; Khatab, K ; Khater, A ; Khater, MM ; Khatony, A ; Khazaei, M ; Khazaei, S ; Khazaei-Pool, M ; Khubchandani, J ; Kianipour, N ; Kim, YJ ; Kimokoti, RW ; Kinyoki, DK ; Kisa, A ; Kisa, S ; Kolola, T ; Kosen, S ; Koul, PA ; Koyanagi, A ; Kraemer, MUG ; Krishan, K ; Krohn, KJ ; Kugbey, N ; Kumar, GA ; Kumar, M ; Kumar, P ; Kuupiel, D ; Lacey, B ; Lad, SD ; Lami, FH ; Larsson, AO ; Lee, PH ; Leili, M ; Levine, AJ ; Li, S ; Lim, L-L ; Listl, S ; Longbottom, J ; Lopez, JCF ; Lorkowski, S ; Magdeldin, S ; Abd El Razek, HM ; Abd El Razek, MM ; Majeed, A ; Maleki, A ; Malekzadeh, R ; Malta, DC ; Mamun, AA ; Manafi, N ; Manda, A-L ; Mansourian, M ; Martins-Melo, FR ; Masaka, A ; Massenburg, BB ; Maulik, PK ; Mayala, BK ; Mazidi, M ; Mckee, M ; Mehrotra, R ; Mehta, KM ; Meles, GG ; Mendoza, W ; Menezes, RG ; Meretoja, A ; Meretoja, TJ ; Mestrovic, T ; Miller, TR ; Miller-Petrie, MK ; Mills, EJ ; Milne, GJ ; Mini, GK ; Mir, SM ; Mirjalali, H ; Mirrakhimov, EM ; Mohamadi, E ; Mohammad, DK ; Darwesh, AM ; Mezerji, NMG ; Mohammed, AS ; Mohammed, S ; Mokdad, AH ; Molokhia, M ; Monasta, L ; Moodley, Y ; Moosazadeh, M ; Moradi, G ; Moradi, M ; Moradi, Y ; Moradi-Lakeh, M ; Moradinazar, M ; Moraga, P ; Morawska, L ; Mosapour, A ; Mousavi, SM ; Mueller, UO ; Muluneh, AG ; Mustafa, G ; Nabavizadeh, B ; Naderi, M ; Nagarajan, AJ ; Nahvijou, A ; Najafi, F ; Nangia, V ; Ndwandwe, DE ; Neamati, N ; Negoi, I ; Negoi, RI ; Ngunjiri, JW ; Huong, LTN ; Long, HN ; Son, HN ; Nielsen, KR ; Ningrum, DNA ; Nirayo, YL ; Nixon, MR ; Nnaji, CA ; Nojomi, M ; Noroozi, M ; Nosratnejad, S ; Noubiap, JJ ; Motlagh, SN ; Ofori-Asenso, R ; Ogbo, FA ; Oladimeji, KE ; Olagunju, AT ; Olfatifar, M ; Olum, S ; Olusanya, BO ; Oluwasanu, MM ; Onwujekwe, OE ; Oren, E ; Ortega-Altamirano, DDV ; Ortiz, A ; Osarenotor, O ; Osei, FB ; Osgood-Zimmerman, AE ; Otstavnov, SS ; Owolabi, MO ; Mahesh, PA ; Pagheh, AS ; Pakhale, S ; Panda-Jonas, S ; Pandey, A ; Park, E-K ; Parsian, H ; Pashaei, T ; Patel, SK ; Pepito, VCF ; Pereira, A ; Perkins, S ; Pickering, BV ; Pilgrim, T ; Pirestani, M ; Piroozi, B ; Pirsaheb, M ; Plana-Ripoll, O ; Pourjafar, H ; Puri, P ; Qorbani, M ; Quintana, H ; Rabiee, M ; Rabiee, N ; Radfar, A ; Rafiei, A ; Rahim, F ; Rahimi, Z ; Rahimi-Movaghar, V ; Rahimzadeh, S ; Rajati, F ; Raju, SB ; Ramezankhani, A ; Ranabhat, CL ; Rasella, D ; Rashedi, V ; Rawal, L ; Reiner, RC ; Renzaho, AMN ; Rezaei, S ; Rezapour, A ; Riahi, SM ; Ribeiro, AI ; Roever, L ; Roro, EM ; Roser, M ; Roshandel, G ; Roshani, D ; Rostami, A ; Rubagotti, E ; Rubino, S ; Sabour, S ; Sadat, N ; Sadeghi, E ; Saeedi, R ; Safari, Y ; Safari-Faramani, R ; Safdarian, M ; Sahebkar, A ; Salahshoor, MR ; Salam, N ; Salamati, P ; Salehi, F ; Zahabi, SS ; Salimi, Y ; Salimzadeh, H ; Salomon, JA ; Sambala, EZ ; Samy, AM ; Milicevic, MMS ; Sao Jose, BP ; Saraswathy, SYI ; Sarmiento-Suarez, R ; Sartorius, B ; Sathian, B ; Saxena, S ; Sbarra, AN ; Schaeffer, LE ; Schwebel, DC ; Sepanlou, SG ; Seyedmousavi, S ; Shaahmadi, F ; Shaikh, MA ; Shams-Beyranvand, M ; Shamshirian, A ; Shamsizadeh, M ; Sharafi, K ; Sharif, M ; Sharif-Alhoseini, M ; Sharifi, H ; Sharma, J ; Sharma, R ; Sheikh, A ; Shields, C ; Shigematsu, M ; Shiri, R ; Shiue, I ; Shuval, K ; Siddiqi, TJ ; Silva, JP ; Singh, JA ; Sinha, DN ; Sisay, MM ; Sisay, S ; Sliwa, K ; Smith, DL ; Somayaji, R ; Soofi, M ; Soriano, JB ; Sreeramareddy, CT ; Sudaryanto, A ; Sufiyan, MB ; Sykes, BL ; Sylaja, PN ; Tabares-Seisdedos, R ; Tabb, KM ; Tabuchi, T ; Taveira, N ; Temsah, M-H ; Terkawi, AS ; Tessema, ZT ; Thankappan, KR ; Thirunavukkarasu, S ; To, QG ; Tovani-Palone, MR ; Bach, XT ; Khanh, BT ; Ullah, I ; Usman, MS ; Uthman, OA ; Vahedian-Azimi, A ; Valdez, PR ; van Boven, JFM ; Vasankari, TJ ; Vasseghian, Y ; Veisani, Y ; Venketasubramanian, N ; Violante, FS ; Vladimirov, SK ; Vlassov, V ; Vos, T ; Giang, TV ; Vujcic, IS ; Waheed, Y ; Wakefield, J ; Wang, H ; Wang, Y ; Wang, Y-P ; Ward, JL ; Weintraub, RG ; Weldegwergs, KG ; Weldesamuel, GT ; Westerman, R ; Wiysonge, CS ; Wondafrash, DZ ; Woyczynski, L ; Wu, A-M ; Xu, G ; Yadegar, A ; Yamada, T ; Yazdi-Feyzabadi, V ; Yilgwan, CS ; Yip, P ; Yonemoto, N ; Lebni, JY ; Younis, MZ ; Yousefifard, M ; Yousof, H-ASA ; Yu, C ; Yusefzadeh, H ; Zabeh, E ; Moghadam, TZ ; Bin Zaman, S ; Zamani, M ; Zandian, H ; Zangeneh, A ; Zerfu, TA ; Zhang, Y ; Ziapour, A ; Zodpey, S ; Murray, CJL ; Hay, SI (NATURE RESEARCH, 2019-10-17)
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2-to end preventable child deaths by 2030-we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000-2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations.
  • Item
    Thumbnail Image
    The current and future global distribution and population at risk of dengue
    Messina, JP ; Brady, OJ ; Golding, N ; Kraemer, MUG ; Wint, GRW ; Ray, SE ; Pigott, DM ; Shearer, FM ; Johnson, K ; Earl, L ; Marczak, LB ; Shirude, S ; Weaver, ND ; Gilbert, M ; Velayudhan, R ; Jones, P ; Jaenisch, T ; Scott, TW ; Reiner, RC ; Hay, S (NATURE PORTFOLIO, 2019-09)
    Dengue is a mosquito-borne viral infection that has spread throughout the tropical world over the past 60 years and now affects over half the world's population. The geographical range of dengue is expected to further expand due to ongoing global phenomena including climate change and urbanization. We applied statistical mapping techniques to the most extensive database of case locations to date to predict global environmental suitability for the virus as of 2015. We then made use of climate, population and socioeconomic projections for the years 2020, 2050 and 2080 to project future changes in virus suitability and human population at risk. This study is the first to consider the spread of Aedes mosquito vectors to project dengue suitability. Our projections provide a key missing piece of evidence for the changing global threat of vector-borne disease and will help decision-makers worldwide to better prepare for and respond to future changes in dengue risk.