School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 245
  • Item
    Thumbnail Image
    Developing Wolbachia-based disease interventions for an extreme environment
    Ross, PA ; Elfekih, S ; Collier, S ; Klein, MJ ; Lee, SS ; Dunn, M ; Jackson, S ; Zhang, Y ; Axford, JK ; Gu, X ; Home, JL ; Nassar, MS ; Paradkar, PN ; Tawfik, EA ; Jiggins, FM ; Almalik, AM ; Al-Fageeh, MB ; Hoffmann, AA ; McGraw, EA (PUBLIC LIBRARY SCIENCE, 2023-01-01)
    Aedes aegypti mosquitoes carrying self-spreading, virus-blocking Wolbachia bacteria are being deployed to suppress dengue transmission. However, there are challenges in applying this technology in extreme environments. We introduced two Wolbachia strains into Ae. aegypti from Saudi Arabia for a release program in the hot coastal city of Jeddah. Wolbachia reduced infection and dissemination of dengue virus (DENV2) in Saudi Arabian mosquitoes and showed complete maternal transmission and cytoplasmic incompatibility. Wolbachia reduced egg hatch under a range of environmental conditions, with the Wolbachia strains showing differential thermal stability. Wolbachia effects were similar across mosquito genetic backgrounds but we found evidence of local adaptation, with Saudi Arabian mosquitoes having lower egg viability but higher adult desiccation tolerance than Australian mosquitoes. Genetic background effects will influence Wolbachia invasion dynamics, reinforcing the need to use local genotypes for mosquito release programs, particularly in extreme environments like Jeddah. Our comprehensive characterization of Wolbachia strains provides a foundation for Wolbachia-based disease interventions in harsh climates.
  • Item
    Thumbnail Image
    Urban population structure and dispersal of an Australian mosquito (Aedes notoscriptus) involved in disease transmission
    Paris, V ; Rane, RV ; Mee, PT ; Lynch, SE ; Hoffmann, AA ; Schmidt, TL (SPRINGERNATURE, 2023-02-01)
    Dispersal is a critical parameter for successful pest control measures as it determines the rate of movement across target control areas and influences the risk of human exposure. We used a fine-scale spatial population genomic approach to investigate the dispersal ecology and population structure of Aedes notoscriptus, an important disease transmitting mosquito at the Mornington Peninsula, Australia. We sampled and reared Ae. notoscriptus eggs at two time points from 170 traps up to 5 km apart and generated genomic data from 240 individuals. We also produced a draft genome assembly from a laboratory colony established from mosquitoes sampled near the study area. We found low genetic structure (Fst) and high coancestry throughout the study region. Using genetic data to identify close kin dyads, we found that mosquitoes had moved distances of >1 km within a generation, which is further than previously recorded. A spatial autocorrelation analysis of genetic distances indicated genetic similarity at >1 km separation, a tenfold higher distance than for a comparable population of Ae. aegypti, from Cairns, Australia. These findings point to high mobility of Ae. notoscriptus, highlighting challenges of localised intervention strategies. Further sampling within the same area 6 and 12 months after initial sampling showed that egg-counts were relatively consistent across time, and that spatial variation in egg-counts covaried with spatial variation in Wright's neighbourhood size (NS). As NS increases linearly with population density, egg-counts may be useful for estimating relative density in Ae. notoscriptus. The results highlight the importance of acquiring species-specific data when planning control measures.
  • Item
    Thumbnail Image
    Wolbachia inhibits ovarian formation and increases blood feeding rate in female Aedes aegypti
    Lau, M-J ; Ross, PA ; Endersby-Harshman, NM ; Yang, Q ; Hoffmann, AA ; Bowen, RA (PUBLIC LIBRARY SCIENCE, 2022-11-01)
    Wolbachia, a gram-negative endosymbiotic bacterium widespread in arthropods, is well-known for changing the reproduction of its host in ways that increase its rate of spread, but there are also costs to hosts that can reduce this. Here we investigated a novel reproductive alteration of Wolbachia wAlbB on its host Aedes aegypti, using studies on mosquito life history traits, ovarian dissection, as well as gene expression assays. We found that an extended period of the larval stage as well as the egg stage (as previously shown) can increase the proportion of Wolbachia-infected females that become infertile; an effect which was not observed in uninfected females. Infertile females had incomplete ovarian formation and also showed a higher frequency of blood feeding following a prior blood meal, indicating that they do not enter a complete gonotrophic cycle. Treatments leading to infertility also decreased the expression of genes related to reproduction, especially the vitellogenin receptor gene whose product regulates the uptake of vitellogenin (Vg) into ovaries. Our results demonstrate effects associated with the development of infertility in wAlbB-infected Ae. aegypti females with implications for Wolbachia releases. The results also have implications for the evolution of Wolbachia infections in novel hosts.
  • Item
    Thumbnail Image
    Genomic and Phenotypic Comparisons Reveal Distinct Variants of Wolbachia Strain wAlbB
    Martinez, J ; Ross, PA ; Gu, X ; Ant, TH ; Murdochy, SM ; Tong, L ; Filipe, ADS ; Hoffmann, AA ; Sinkins, SP ; Buan, NR (AMER SOC MICROBIOLOGY, 2022-11-01)
    The intracellular bacterium Wolbachia inhibits virus replication and is being harnessed around the world to fight mosquito-borne diseases through releases of mosquitoes carrying the symbiont. Wolbachia strains vary in their ability to invade mosquito populations and suppress viruses in part due to differences in their density within the insect and associated fitness costs. Using whole-genome sequencing, we demonstrate the existence of two variants in wAlbB, a Wolbachia strain being released in natural populations of Aedes aegypti mosquitoes. The two variants display striking differences in genome architecture and gene content. Differences in the presence/absence of 52 genes between variants include genes located in prophage regions and others potentially involved in controlling the symbiont's density. Importantly, we show that these genetic differences correlate with variation in wAlbB density and its tolerance to heat stress, suggesting that different wAlbB variants may be better suited for field deployment depending on local environmental conditions. Finally, we found that the wAlbB genome remained stable following its introduction in a Malaysian mosquito population. Our results highlight the need for further genomic and phenotypic characterization of Wolbachia strains in order to inform ongoing Wolbachia-based programs and improve the selection of optimal strains in future field interventions. IMPORTANCE Dengue is a viral disease transmitted by Aedes mosquitoes that threatens around half of the world population. Recent advances in dengue control involve the introduction of Wolbachia bacterial symbionts with antiviral properties into mosquito populations, which can lead to dramatic decreases in the incidence of the disease. In light of these promising results, there is a crucial need to better understand the factors affecting the success of such strategies, in particular the choice of Wolbachia strain for field releases and the potential for evolutionary changes. Here, we characterized two variants of a Wolbachia strain used for dengue control that differ at the genomic level and in their ability to replicate within the mosquito. We also found no evidence for the evolution of the symbiont within the 2 years following its deployment in Malaysia. Our results have implications for current and future Wolbachia-based health interventions.
  • Item
    Thumbnail Image
    Spatio-Temporal Modelling Informing Wolbachia Replacement Releases in a Low Rainfall Climate
    Pagendam, D ; Elfekih, S ; Nassar, MS ; Nelson, S ; Almalik, AM ; Tawfik, EA ; Al-Fageeh, MB ; Hoffmann, AA (MDPI, 2022-10-01)
    Releases of Aedes aegypti carrying Wolbachia bacteria are known to suppress arbovirus transmission and reduce the incidence of vector-borne diseases. In planning for Wolbachia releases in the arid environment of Jeddah, Saudi Arabia, we collected entomological data with ovitraps across a 7-month period in four locations. Herein, we show that mosquito presence in basements does not differ from that of non-basement areas of buildings. In modelling mosquito presence across the study sites, we found the spatial structure to be statistically significant in one of the four sites, while a significant spatial structure was found for egg production data across three of the four sites. The length scales of the spatial covariance functions fitted to the egg production data ranged from 143 m to 574 m, indicating that high productivity regions can be extensive in size. Rank-correlation analyses indicated that mosquito presence tended to persist from the dry to wet season, but that egg production ranks at locations could reverse. The data suggest that, in Jeddah, the quality of the local environment for breeding can vary over time. The data support the feasibility of dry season releases but with release numbers needing to be flexible depending on local rates of invasion.
  • Item
    No Preview Available
    A male-killing Wolbachia endosymbiont is concealed by another endosymbiont and a nuclear suppressor
    Richardson, K ; Ross, PA ; Cooper, B ; Conner, W ; Schmidt, T ; Hoffmann, A ; Malik, HS (PUBLIC LIBRARY SCIENCE, 2023-03-01)
    Bacteria that live inside the cells of insect hosts (endosymbionts) can alter the reproduction of their hosts, including the killing of male offspring (male killing, MK). MK has only been described in a few insects, but this may reflect challenges in detecting MK rather than its rarity. Here, we identify MK Wolbachia at a low frequency (around 4%) in natural populations of Drosophila pseudotakahashii. MK Wolbachia had a stable density and maternal transmission during laboratory culture, but the MK phenotype which manifested mainly at the larval stage was lost rapidly. MK Wolbachia occurred alongside a second Wolbachia strain expressing a different reproductive manipulation, cytoplasmic incompatibility (CI). A genomic analysis highlighted Wolbachia regions diverged between the 2 strains involving 17 genes, and homologs of the wmk and cif genes implicated in MK and CI were identified in the Wolbachia assembly. Doubly infected males induced CI with uninfected females but not females singly infected with CI-causing Wolbachia. A rapidly spreading dominant nuclear suppressor genetic element affecting MK was identified through backcrossing and subsequent analysis with ddRAD SNPs of the D. pseudotakahashii genome. These findings highlight the complexity of nuclear and microbial components affecting MK endosymbiont detection and dynamics in populations and the challenges of making connections between endosymbionts and the host phenotypes affected by them.
  • Item
    No Preview Available
    Lipidomic Profiling Reveals Concerted Temporal Patterns of Functionally Related Lipids in Aedes aegypti Females Following Blood Feeding
    Lau, M-J ; Nie, S ; Yang, Q ; Harshman, LG ; Mao, C ; Williamson, NA ; Hoffmann, AA (MDPI, 2023-03-01)
    We conducted a lipidomic analysis of the whole body of female Aedes aegypti mosquitoes at different time points over the course of feeding and reproduction. There were temporal biphasic increases of more than 80% of lipids identified at the time of feeding and from 16 h to 30 h post blood meal (PBM). During these two increases, the abundance of many lipids dropped while body weight remained stable, probably reflecting blood lipid digestion and the synthesis of vitellogenin in this period. A concerted temporal pattern was particularly strong at the second peak for membrane and signalling lipids such as phosphatidylethanolamine (PE), phosphatidylinositol (PI), cardiolipin (CL), hexosylceramide (HexCer) and lyso-phosphatidic acid (LPA). Lyso-glycerophospholipids showed three distinct change patterns that are functionally related: Lyso-PE and Lyso-phosphatidylcholine (LPC), which are membrane lipids, showed little change; LPA, a signalling lipid, showed a significant increase from 16 to 30 h PBM; Lyso-PI, a bioactive lipid, and both lyso-phosphatidylglycerol (LPG) and lyso-phosphatidylserine (LPS), which are bacterial membrane lipids, showed one significant increase from the time of feeding to 16 h post blood meal. The result of our study on the anautogenous insect Ae. aegypti point to specific lipids likely to be important in the reproductive process with a role in the formation and growth of ovarian follicles.
  • Item
    Thumbnail Image
    Genome-wide SNPs of vegetable leafminer, Liriomyza sativae: Insights into the recent Australian invasion
    Xu, X ; Schmidt, TL ; Liang, J ; Ridland, PM ; Chung, J ; Yang, Q ; Jasper, ME ; Umina, PA ; Liu, W ; Hoffmann, AA (WILEY, 2022-06-28)
    Liriomyza sativae, the vegetable leafminer, is an important agricultural pest originally from the Americas, which has now colonized all continents except Antarctica. In 2015, L. sativae arrived on the Australian mainland and established on the Cape York Peninsula in the northeast of the country near the Torres Strait, which provides a possible pathway for pests to enter Australia and evade biosecurity efforts. Here, we assessed genetic variation in L. sativae based on genome-wide single nucleotide polymorphisms (SNPs) generated by double digest restriction-site-associated DNA sequencing (ddRAD-seq), aiming to uncover the potential origin(s) of this pest in Australia and contribute to reconstructing its global invasion history. Our fineRADstructure results and principal component analysis suggest Australian mainland populations were genetically close to populations from the Torres Strait, whereas populations from Asia, Africa, and Papua New Guinea (PNG) were more distantly related. Hawaiian populations were genetically distinct from all other populations of L. sativae included in our study. Admixture analyses further revealed that L. sativae from the Torres Strait may have genetic variation originating from multiple sources including Indonesia and PNG, and which has now spread to the Australian mainland. The L. sativae lineages from Asia and Africa appear closely related. Isolation-by-distance (IBD) was found at a broad global scale, but not within small regions, suggesting that human-mediated factors likely contribute to the local spread of this pest. Overall, our findings suggest that an exotic Liriomyza pest invaded Australia through the Indo-Papuan conduit, highlighting the importance of biosecurity programs aimed at restricting the movement of pests and diseases through this corridor.
  • Item
    Thumbnail Image
    Population bottlenecks constrain host microbiome diversity and genetic variation impeding fitness
    Orsted, M ; Yashiro, E ; Hoffmann, AA ; Kristensen, TN ; Dyer, KA (PUBLIC LIBRARY SCIENCE, 2022-05-01)
    It is becoming increasingly clear that microbial symbionts influence key aspects of their host's fitness, and vice versa. This may fundamentally change our thinking about how microbes and hosts interact in influencing fitness and adaptation to changing environments. Here we explore how reductions in population size commonly experienced by threatened species influence microbiome diversity. Consequences of such reductions are normally interpreted in terms of a loss of genetic variation, increased inbreeding and associated inbreeding depression. However, fitness effects of population bottlenecks might also be mediated through microbiome diversity, such as through loss of functionally important microbes. Here we utilise 50 Drosophila melanogaster lines with different histories of population bottlenecks to explore these questions. The lines were phenotyped for egg-to-adult viability and their genomes sequenced to estimate genetic variation. The bacterial 16S rRNA gene was amplified in these lines to investigate microbial diversity. We found that 1) host population bottlenecks constrained microbiome richness and diversity, 2) core microbiomes of hosts with low genetic variation were constituted from subsets of microbiomes found in flies with higher genetic variation, 3) both microbiome diversity and host genetic variation contributed to host population fitness, 4) connectivity and robustness of bacterial networks was low in the inbred lines regardless of host genetic variation, 5) reduced microbial diversity was associated with weaker evolutionary responses of hosts in stressful environments, and 6) these effects were unrelated to Wolbachia density. These findings suggest that population bottlenecks reduce hologenomic variation (combined host and microbial genetic variation). Thus, while the current biodiversity crisis focuses on population sizes and genetic variation of eukaryotes, an additional focal point should be the microbial diversity carried by the eukaryotes, which in turn may influence host fitness and adaptability with consequences for the persistence of populations.
  • Item
    Thumbnail Image
    Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species
    Willi, Y ; Kristensen, TN ; Sgro, CM ; Weeks, AR ; orsted, M ; Hoffmann, AA (NATL ACAD SCIENCES, 2022-01-04)
    About 50 y ago, Crow and Kimura [An Introduction to Population Genetics Theory (1970)] and Ohta and Kimura [Genet. Res. 22, 201-204 (1973)] laid the foundations of conservation genetics by predicting the relationship between population size and genetic marker diversity. This work sparked an enormous research effort investigating the importance of population dynamics, in particular small population size, for population mean performance, population viability, and evolutionary potential. In light of a recent perspective [J. C. Teixeira, C. D. Huber, Proc. Natl. Acad. Sci. U.S.A. 118, 10 (2021)] that challenges some fundamental assumptions in conservation genetics, it is timely to summarize what the field has achieved, what robust patterns have emerged, and worthwhile future research directions. We consider theory and methodological breakthroughs that have helped management, and we outline some fundamental and applied challenges for conservation genetics.