School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 256
  • Item
    Thumbnail Image
    Phylogenetic and environmental patterns of sex differentiation in physiological traits across Drosophila species
    Kellermann, V ; Overgaard, J ; Sgro, CM ; Hoffmann, AA (WILEY, 2022-11)
    Sex-based differences in physiological traits may be influenced by both evolutionary and environmental factors. Here we used male and female flies from >80 Drosophila species reared under common conditions to examine variance in a number of physiological traits including size, starvation, desiccation and thermal tolerance. Sex-based differences for desiccation and starvation resistance were comparable in magnitude to those for size, with females tending to be relatively more resistant than males. In contrast thermal resistance showed low divergence between the sexes. Phylogenetic signal was detected for measures of divergence between the sexes, such that species from the Sophophora clade showed larger differences between the sexes than species from the Drosophila clade. We also found that sex-based differences in desiccation resistance, body size and starvation resistance were weakly associated with climate (annual mean temperature/precipitation seasonality) but the direction and association with environment depended on phylogenetic position. The results suggest that divergence between the sexes can be linked to environmental factors, while an association with phylogeny suggests sex-based differences persist over long evolutionary time-frames.
  • Item
    Thumbnail Image
    Is what you see what you get? The relationship between field observed and laboratory observed aphid parasitism rates in canola fields
    Ward, SE ; Umina, PA ; Parry, H ; Balfour-Cunningham, A ; Cheng, X ; Heddle, T ; Holloway, JC ; Langley, C ; Severtson, D ; Van Helden, M ; Hoffmann, AA (JOHN WILEY & SONS LTD, 2022-06-07)
  • Item
    Thumbnail Image
    Whole genome resequencing reveals signatures of rapid selection in a virus-affected commercial fishery
    Holland, OJ ; Toomey, M ; Ahrens, C ; Hoffmann, AA ; Croft, LJ ; Sherman, CDH ; Miller, AD ; Davison, A (WILEY, 2022-05-31)
    Infectious diseases are recognized as one of the greatest global threats to biodiversity and ecosystem functioning. Consequently, there is a growing urgency to understand the speed at which adaptive phenotypes can evolve and spread in natural populations to inform future management. Here we provide evidence of rapid genomic changes in wild Australian blacklip abalone (Haliotis rubra) following a major population crash associated with an infectious disease. Genome scans on H. rubra were performed using pooled whole genome resequencing data from commercial fishing stocks varying in historical exposure to haliotid herpesvirus-1 (HaHV-1). Approximately 25,000 single nucleotide polymorphism loci associated with virus exposure were identified, many of which mapped to genes known to contribute to HaHV-1 immunity in the New Zealand pāua (Haliotis iris) and herpesvirus response pathways in haliotids and other animal systems. These findings indicate genetic changes across a single generation in H. rubra fishing stocks decimated by HaHV-1, with stock recovery potentially determined by rapid evolutionary changes leading to virus resistance. This is a novel example of apparently rapid adaptation in natural populations of a nonmodel marine organism, highlighting the pace at which selection can potentially act to counter disease in wildlife communities.
  • Item
    Thumbnail Image
    Understanding the biology of species' ranges: when and how does evolution change the rules of ecological engagement?
    Bridle, J ; Hoffmann, A (ROYAL SOC, 2022-04-11)
    Understanding processes that limit species' ranges has been a core issue in ecology and evolutionary biology for many decades, and has become increasingly important given the need to predict the responses of biological communities to rapid environmental change. However, we still have a poor understanding of evolution at range limits and its capacity to change the ecological 'rules of engagement' that define these communities, as well as the time frame over which this occurs. Here we link papers in the current volume to some key concepts involved in the interactions between evolutionary and ecological processes at species' margins. In particular, we separate hypotheses about species' margins that focus on hard evolutionary limits, which determine how genotypes interact with their environment, from those concerned with soft evolutionary limits, which determine where and when local adaptation can persist in space and time. We show how theoretical models and empirical studies highlight conditions under which gene flow can expand local limits as well as contain them. In doing so, we emphasize the complex interplay between selection, demography and population structure throughout a species' geographical and ecological range that determines its persistence in biological communities. However, despite some impressively detailed studies on range limits, particularly in invertebrates and plants, few generalizations have emerged that can predict evolutionary responses at ecological margins. We outline some directions for future work such as considering the impact of structural genetic variants and metapopulation structure on limits, and the interaction between range limits and the evolution of mating systems and non-random dispersal. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
  • Item
    Thumbnail Image
    Detection, Detrimental Effects, and Transmission Pathways of the Pathogenic Bacterium Acaricomes phytoseiuli in Commercial Predatory Mites
    Xie, Z ; Hoffmann, AA ; Zhang, B ; Xu, X ; Cheng, D (AMER SOC MICROBIOLOGY, 2022-12-21)
    Arthropod pathogens and other microorganisms have been documented from mass production systems aimed at producing natural enemies for pest control. If losses due to pathogens are encountered in such systems, they could lead to uneconomical production of natural enemies and/or a loss of predator quality for effective field control of target pests. Here, we identify and describe the laboratory transmission of a bacterial pathogen, Acaricomes phytoseiuli, in a Chinese strain of the local predatory mite Neoseiulus californicus following contact with Phytoseiulus persimilis, a predatory mite imported for the control of small sap-sucking pests in greenhouses. Analysis of the 16S rRNA gene and whole-genome sequences of A. phytoseiuli isolated from the Chinese strain of N. californicus showed 99.6 and 99.78% similarity, respectively, to the pathogen isolated from a European population (DSM14247 strain). This is the first report of P. persimilis infected with A. phytoseiuli outside Europe and transmitting to a local predatory mite species. A. phytoseiuli severely damaged local N. californicus, leading to a dorso-ventrally flattened body and reduced prey consumption and reproduction as well as early death. Through fluorescence in situ hybridization, A. phytoseiuli was shown to accumulate in the digestive tract of mites and in the oviductal bulb of adult females. Infected males had no obvious symptoms, but they still were able to pass on the infection to healthy females through contact and mating. The pathogen was transmitted vertically to offspring by either infected parent through adherence to eggshells. A. phytoseiuli could also persist in other herbivorous arthropods from the same habitat, suggesting wider potential risks. Our study highlights pathogen risk to predators in local biocontrol industries through pathogen spread from imported material. IMPORTANCE Predatory mites are important natural enemies for biological control of pests, but mass rearing of the mites can be affected by pathogens. In particular, the mite pathogen Acaricomes phytoseiuli may pose a threat to predatory mite production, and we have now detected this pathogen in China. We explored the pathogen's transmission within species, its ability to transfer to a locally important predatory mite species, and symptoms following transfer. The detection of A. phytoseiuli and its ability to transfer to a local predator where it reduces performance highlight the importance of ongoing monitoring and hygiene in the predatory mite industry.
  • Item
    Thumbnail Image
    The redlegged earth mite draft genome provides new insights into pesticide resistance evolution and demography in its invasive Australian range
    Thia, JA ; Korhonen, PK ; Young, ND ; Gasser, RB ; Umina, PA ; Yang, Q ; Edwards, O ; Walsh, T ; Hoffmann, AA (WILEY, 2022-12-27)
    Genomic data provide valuable insights into pest management issues such as resistance evolution, historical patterns of pest invasions and ongoing population dynamics. We assembled the first reference genome for the redlegged earth mite, Halotydeus destructor (Tucker, 1925), to investigate adaptation to pesticide pressures and demography in its invasive Australian range using whole-genome pool-seq data from regionally distributed populations. Our reference genome comprises 132 autosomal contigs, with a total length of 48.90 Mb. We observed a large complex of ace genes, which has presumably evolved from a long history of organophosphate selection in H. destructor and may contribute towards organophosphate resistance through copy number variation, target-site mutations and structural variants. In the putative ancestral H. destructor ace gene, we identified three target-site mutations (G119S, A201S and F331Y) segregating in organophosphate-resistant populations. Additionally, we identified two new para sodium channel gene mutations (L925I and F1020Y) that may contribute to pyrethroid resistance. Regional structuring observed in population genomic analyses indicates that gene flow in H. destructor does not homogenize populations across large geographic distances. However, our demographic analyses were equivocal on the magnitude of gene flow; the short invasion history of H. destructor makes it difficult to distinguish scenarios of complete isolation vs. ongoing migration. Nonetheless, we identified clear signatures of reduced genetic diversity and smaller inferred effective population sizes in eastern vs. western populations, which is consistent with the stepping-stone invasion pathway of this pest in Australia. These new insights will inform development of diagnostic genetic markers of resistance, further investigation into the multifaceted organophosphate resistance mechanism and predictive modelling of resistance evolution and spread.
  • Item
    No Preview Available
    Parthenogenesis without costs in a grasshopper with hybrid origins
    Kearney, MR ; Jasper, ME ; White, VL ; Aitkenhead, IJ ; Blacket, MJ ; Kong, JD ; Chown, SL ; Hoffmann, AA (AMER ASSOC ADVANCEMENT SCIENCE, 2022-06-03)
    The rarity of parthenogenetic species is typically attributed to the reduced genetic variability that accompanies the absence of sex, yet natural parthenogens can be surprisingly successful. Ecological success is often proposed to derive from hybridization through enhanced genetic diversity from repetitive origins or enhanced phenotypic breadth from heterosis. Here, we tested and rejected both hypotheses in a classic parthenogen, the diploid grasshopper Warramaba virgo. Genetic data revealed a single hybrid mating origin at least 0.25 million years ago, and comparative analyses of 14 physiological and life history traits showed no evidence for altered fitness relative to its sexual progenitors. Our findings imply that the rarity of parthenogenesis is due to constraints on origin rather than to rapid extinction.
  • Item
    No Preview Available
    Long-term biogeographical processes dominate patterns of genetic diversity in a wingless grasshopper despite substantial recent habitat fragmentation
    Hoffmann, AA ; Jasper, M ; White, VL ; Yagui, H ; Kearney, MR (WILEY, 2023-06)
    Low-vagility species may hold strong genetic signatures of past biogeographical processes but are also vulnerable to habitat loss. Flightless grasshoppers of the morabine group were once widespread in southeastern Australia, including Tasmania, but are becoming restricted to remnant patches of vegetation, with local ranges impacted by agriculture and development as well as management. Habitat fragmentation can generate genetically differentiated "island" populations with low genetic variation. However, following revegetation, populations could be re-established, and gene flow increased. Here we characterize single nucleotide polymorphism-based genetic variation in a widespread chromosomal race of the morabine Vandiemenella viatica (race 19) to investigate the genetic health of remnant populations and to provide guidelines for restoration efforts. We update the distribution of this race to new sites in Victoria and Tasmania, and show that V. viatica populations from northern Tasmania and eastern Victoria have reduced genetic variation compared to other mainland populations. In contrast, there was no effect of habitat fragment size on genetic variation. Tasmanian V. viatica populations fell into two groups, one connected genetically to eastern Victoria and the other connected to southwestern Victoria. Mainland populations showed isolation by distance. These patterns are consistent with expectations from past biogeographical processes rather than local recent population fragmentation and emphasize the importance of small local reserves in preserving genetic variation. The study highlights how genomic analyses can combine information on genetic variability and population structure to identify biogeographical patterns within a species, which in turn can inform decisions on potential source populations for translocations.
  • Item
    No Preview Available
    Characterization of the first Wolbachia from the genus Scaptodrosophila, a male-killer from the rainforest species S.claytoni
    Richardson, KM ; Schiffer, M ; Ross, PA ; Thia, JA ; Hoffmann, AA (WILEY, 2022-10)
    The Scaptodrosophila genus represents a large group of drosophilids with a worldwide distribution and a predominance of species in Australia, but there is little information on the presence and impacts of Wolbachia endosymbionts in this group. Here we describe the first Wolbachia infection from this group, wClay isolated from Scaptodrosophila claytoni (van Klinken), a species from the east coast of Australia. The infection is polymorphic in natural populations, occurring at a frequency of around 6%-10%. wClay causes male killing, producing female-biased lines; most lines showed 100% male killing, though in 1 line it was <80%. The lines need to be maintained through the introduction of males unless the infection is removed by tetracycline treatment. wClay is transmitted at a high fidelity (98.6%) through the maternal lineage and has been stable in 2 laboratory lines across 24 generations, suggesting it is likely to persist in populations. The infection has not been previously described but is closely related to the male-killing Wolbachia recently described from Drosophila pandora based on multilocus sequence typing and the wsp gene. Male-killing Wolbachia are likely to be common in drosophilids but remain difficult to detect because the infections can often be at a low frequency.
  • Item
    No Preview Available
    Fitness costs of Wolbachia shift in locally-adapted Aedes aegypti mosquitoes
    Ross, PA ; Hoffmann, AA (WILEY, 2022-10-18)
    Aedes aegypti mosquito eggs can remain quiescent for many months before hatching, allowing populations to persist through unfavourable conditions. A. aegypti infected with the Wolbachia strain wMel have been released in tropical and subtropical regions for dengue control. wMel reduces the viability of quiescent eggs, but this physiological cost might be expected to evolve in natural mosquito populations that frequently experience stressful conditions. We found that the cost of wMel infection differed consistently between mosquitoes collected from different locations and became weaker across laboratory generations, suggesting environment-specific adaptation of mosquitoes to the wMel infection. Reciprocal crossing experiments show that differences in the cost of wMel to quiescent egg viability were mainly due to mosquito genetic background and not Wolbachia origin. wMel-infected mosquitoes hatching from long-term quiescent eggs showed partial loss of cytoplasmic incompatibility and female infertility, highlighting additional costs of long-term quiescence. Our study provides the first evidence for a shift in Wolbachia phenotypic effects following deliberate field release and establishment and it highlights interactions between Wolbachia infections and mosquito genetic backgrounds. The unexpected changes in fitness costs observed here suggest potential tradeoffs with undescribed fitness benefits of the wMel infection.