School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Characterisation of major histocompatibility complex class I genes at the fetal-maternal interface of marsupials
    Buentjen, I ; Drews, B ; Frankenberg, SR ; Hildebrandt, TB ; Renfree, MB ; Menzies, BR (SPRINGER, 2015-07)
    Major histocompatibility complex class I molecules (MHC-I) are expressed at the cell surface and are responsible for the presentation of self and non-self antigen repertoires to the immune system. Eutherian mammals express both classical and non-classical MHC-I molecules in the placenta, the latter of which are thought to modulate the maternal immune response during pregnancy. Marsupials last shared a common ancestor with eutherian mammals such as humans and mice over 160 million years ago. Since, like eutherians, they have an intra-uterine development dependent on a placenta, albeit a short-lived and less invasive one, they provide an opportunity to investigate the evolution of MHC-I expression at the fetal-maternal interface. We have characterised MHC-I mRNA expression in reproductive tissues of the tammar wallaby (Macropus eugenii) from the time of placental attachment to day 25 of the 26.5 day pregnancy. Putative classical MHC-I genes were expressed in the choriovitelline placenta, fetus, and gravid endometrium throughout the whole of this period. The MHC-I classical sequences were phylogenetically most similar to the Maeu-UC (50/100 clones) and Maeu-UA genes (7/100 clones). Expression of three non-classical MHC-I genes (Maeu-UD, Maeu-UK and Maeu-UM) were also present in placental samples. The results suggest that expression of classical and non-classical MHC-I genes in extant marsupial and eutherian mammals may have been necessary for the evolution of the ancestral therian placenta and survival of the mammalian fetus at the maternal-fetal interface.
  • Item
    Thumbnail Image
    On the origin of POU5F1
    Frankenberg, S ; Renfree, MB (BMC, 2013-05-09)
    BACKGROUND: Pluripotency is a fundamental property of early mammalian development but it is currently unclear to what extent its cellular mechanisms are conserved in vertebrates or metazoans. POU5F1 and POU2 are the two principle members constituting the class V POU domain family of transcription factors, thought to have a conserved role in the regulation of pluripotency in vertebrates as well as germ cell maintenance and neural patterning. They have undergone a complex pattern of evolution which is poorly understood and controversial. RESULTS: By analyzing the sequences of POU5F1, POU2 and their flanking genes, we provide strong indirect evidence that POU5F1 originated at least as early as a common ancestor of gnathostomes but became extinct in a common ancestor of teleost fishes, while both POU5F1 and POU2 survived in the sarcopterygian lineage leading to tetrapods. Less divergent forms of POU5F1 and POU2 appear to have persisted among cartilaginous fishes. CONCLUSIONS: Our study resolves the controversial evolutionary relationship between teleost pou2 and tetrapod POU2 and POU5F1, and shows that class V POU transcription factors have existed at least since the common ancestor of gnathostome vertebrates. It provides a framework for elucidating the basis for the lineage-specific extinctions of POU2 and POU5F1.
  • Item
    Thumbnail Image
    Evolution of coding and non-coding genes in HOX clusters of a marsupial
    Yu, H ; Lindsay, J ; Feng, Z-P ; Frankenberg, S ; Hu, Y ; Carone, D ; Shaw, G ; Pask, AJ ; O'Neill, R ; Papenfuss, AT ; Renfree, MB (BMC, 2012-06-18)
    BACKGROUND: The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. RESULTS: Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. CONCLUSIONS: This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.
  • Item
    Thumbnail Image
    Evolution of vertebrate interferon inducible transmembrane proteins
    Hickford, D ; Frankenberg, S ; Shaw, G ; Renfree, MB (BMC, 2012-04-26)
    BACKGROUND: Interferon inducible transmembrane proteins (IFITMs) have diverse roles, including the control of cell proliferation, promotion of homotypic cell adhesion, protection against viral infection, promotion of bone matrix maturation and mineralisation, and mediating germ cell development. Most IFITMs have been well characterised in human and mouse but little published data exists for other animals. This study characterised IFITMs in two distantly related marsupial species, the Australian tammar wallaby and the South American grey short-tailed opossum, and analysed the phylogeny of the IFITM family in vertebrates. RESULTS: Five IFITM paralogues were identified in both the tammar and opossum. As in eutherians, most marsupial IFITM genes exist within a cluster, contain two exons and encode proteins with two transmembrane domains. Only two IFITM genes, IFITM5 and IFITM10, have orthologues in both marsupials and eutherians. IFITM5 arose in bony fish and IFITM10 in tetrapods. The bone-specific expression of IFITM5 appears to be restricted to therian mammals, suggesting that its specialised role in bone production is a recent adaptation specific to mammals. IFITM10 is the most highly conserved IFITM, sharing at least 85% amino acid identity between birds, reptiles and mammals and suggesting an important role for this presently uncharacterised protein. CONCLUSIONS: Like eutherians, marsupials also have multiple IFITM genes that exist in a gene cluster. The differing expression patterns for many of the paralogues, together with poor sequence conservation between species, suggests that IFITM genes have acquired many different roles during vertebrate evolution.
  • Item
    Thumbnail Image
    A novel MSMB-related microprotein in the postovulatory egg coats of marsupials
    Frankenberg, S ; Fenelon, J ; Dopheide, B ; Shaw, G ; Renfree, MB (BMC, 2011-12-30)
    BACKGROUND: Early marsupial conceptuses differ markedly from those of eutherian mammals, especially during cleavage and early blastocyst stages of development. Additionally, in marsupials the zona pellucida is surrounded by two acellular layers, the mucoid coat and shell, which are formed from secretions from the reproductive tract. RESULTS: We report the identification of a novel postovulatory coat component in marsupials, which we call uterinesecreted microprotein (USM). USM belongs to a family of disulfide-rich microproteins of unconfirmed function that is found throughout deuterostomes and in some protostomes, and includes β-microseminoprotein (MSMB) and prostate-associated microseminoprotein (MSMP). We describe the evolution of this family in detail, including USM-related sequences in other vertebrates. The orthologue of USM in the tammar wallaby, USM1, is expressed by the endometrium with a dynamic temporal profile, possibly under the control of progesterone. CONCLUSIONS: USM appears to have evolved in a mammalian ancestor specifically as a component of the postovulatory coats. By analogy with the known properties of MSMB, it may have roles in regulating sperm motility/survival or in the immune system. However, its C-terminal domain is greatly truncated compared with MSMB, suggesting a divergent function.
  • Item
    Thumbnail Image
    Identification of two distinct genes at the vertebrate TRPC2 locus and their characterisation in a marsupial and a monotreme
    Frankenberg, S ; Schneider, NY ; Fletcher, TP ; Shaw, G ; Renfree, MB (BIOMED CENTRAL LTD, 2011-08-19)
    BACKGROUND: The vomeronasal organ (VNO) detects pheromones via two large families of vomeronasal receptors: vomeronasal receptor 1 (V1R) and vomeronasal receptor 2 (V2R). Both VRs have a common receptor activation cascade involving transient receptor potential channel, subfamily C, member 2 (TRPC2). RESULTS: We characterised the TRPC2 locus in a marsupial, the tammar wallaby (Macropus eugenii), and identified two independently regulated genes not previously recognised as distinct. 3'-located exons comprise bona fide TRPC2 whilst 5'-located exons, previously identified as part of TRPC2, comprise a distinct gene, which we term XNDR (XRCC1 N-terminal domain-related). The two genes show contrasting expression patterns in the tammar: TRPC2 is specifically expressed in adult and developing VNO, whereas XNDR is widely expressed in many tissues suggesting a non-VNO-specific role. Strong expression of TRPC2 was detected only after about day 30 post-partum, suggesting that the VNO may not be functional during early pouch life of the tammar. Similarly restricted expression of TRPC2 and widespread expression of XNDR was also detected in the platypus. Bioinformatic analysis of the genomes of a wide range of species suggests that the identity of XNDR and TRPC2 as distinct genes is conserved among vertebrates. Finally, we analysed the promoter of mammalian TRPC2 and identified a conserved binding site for NHLH1, a transcription factor previously implicated in VNO receptor neuron development. CONCLUSIONS: Two functionally distinct vertebrate genes-XNDR and TRPC2 - occupy a genomic locus that was previously defined as a single gene in the mouse. The former is widely expressed with a putative role in DNA repair, while the latter shows VNO-specific expression under the probable regulation of NHLH1.