School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Integrative Multi-omics Analyses of Barley Rootzones under Salinity Stress Reveal Two Distinctive Salt Tolerance Mechanisms
    Ho, WWH ; Hill, CB ; Doblin, MS ; Shelden, MC ; van de Meene, A ; Rupasinghe, T ; Bacic, A ; Roessner, U (ELSEVIER, 2020-05-11)
    The mechanisms underlying rootzone-localized responses to salinity during early stages of barley development remain elusive. In this study, we performed the analyses of multi-root-omes (transcriptomes, metabolomes, and lipidomes) of a domesticated barley cultivar (Clipper) and a landrace (Sahara) that maintain and restrict seedling root growth under salt stress, respectively. Novel generalized linear models were designed to determine differentially expressed genes (DEGs) and abundant metabolites (DAMs) specific to salt treatments, genotypes, or rootzones (meristematic Z1, elongation Z2, and maturation Z3). Based on pathway over-representation of the DEGs and DAMs, phenylpropanoid biosynthesis is the most statistically enriched biological pathway among all salinity responses observed. Together with histological evidence, an intense salt-induced lignin impregnation was found only at stelic cell wall of Clipper Z2, compared with a unique elevation of suberin deposition across Sahara Z2. This suggests two differential salt-induced modulations of apoplastic flow between the genotypes. Based on the global correlation network of the DEGs and DAMs, callose deposition that potentially adjusted symplastic flow in roots was almost independent of salinity in rootzones of Clipper, and was markedly decreased in Sahara. Taken together, we propose two distinctive salt tolerance mechanisms in Clipper (growth-sustaining) and Sahara (salt-shielding), providing important clues for improving crop plasticity to cope with deteriorating global soil salinization.
  • Item
    Thumbnail Image
    Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress
    Shelden, MC ; Dias, DA ; Jayasinghe, NS ; Bacic, A ; Roessner, U (OXFORD UNIV PRESS, 2016-06)
    Barley (Hordeum vulgare L.) is the most salt-tolerant cereal crop and has excellent genetic and genomic resources. It is therefore a good model to study salt-tolerance mechanisms in cereals. We aimed to determine metabolic differences between a cultivated barley, Clipper (tolerant), and a North African landrace, Sahara (susceptible), previously shown to have contrasting root growth phenotypes in response to the early phase of salinity stress. GC-MS was used to determine spatial changes in primary metabolites in barley roots in response to salt stress, by profiling three different regions of the root: root cap/cell division zone (R1), elongation zone (R2), and maturation zone (R3). We identified 76 known metabolites, including 29 amino acids and amines, 20 organic acids and fatty acids, and 19 sugars and sugar phosphates. The maintenance of cell division and root elongation in Clipper in response to short-term salt stress was associated with the synthesis and accumulation of amino acids (i.e. proline), sugars (maltose, sucrose, xylose), and organic acids (gluconate, shikimate), indicating a potential role for these metabolic pathways in salt tolerance and the maintenance of root elongation. The processes involved in root growth adaptation and the underlying coordination of metabolic pathways appear to be controlled in a region-specific manner. This study highlights the importance of utilizing spatial profiling and will provide us with a better understanding of abiotic stress response(s) in plants at the tissue and cellular level.
  • Item
    Thumbnail Image
    De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure
    Hill, CB ; Cassin, A ; Keeble-Gagnere, G ; Doblin, MS ; Bacic, A ; Roessner, U (NATURE PORTFOLIO, 2016-08-16)
    Plant roots are the first organs sensing and responding to salinity stress, manifested differentially between different root types, and also at the individual tissue and cellular level. High genetic diversity and the current lack of an assembled map-based sequence of the barley genome severely limit barley research potential. We used over 580 and 600 million paired-end reads, respectively, to create two de novo assemblies of a barley landrace (Sahara) and a malting cultivar (Clipper) with known contrasting responses to salinity. Generalized linear models were used to statistically access spatial, treatment-related, and genotype-specific responses. This revealed a spatial gene expression gradient along the barley root, with more differentially expressed transcripts detected between different root zones than between treatments. The root transcriptome also showed a gradual transition from transcripts related to sugar-mediated signaling at the root meristematic zone to those involved in cell wall metabolism in the elongation zone, and defense response-related pathways toward the maturation zone, with significant differences between the two genotypes. The availability of these additional transcriptome reference sets will serve as a valuable resource to the cereal research community, and may identify valuable traits to assist in breeding programmes.
  • Item
    Thumbnail Image
    Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance
    Widodo, ; Patterson, JH ; Newbigin, E ; Tester, M ; Bacic, A ; Roessner, U (OXFORD UNIV PRESS, 2009)
    Plants show varied cellular responses to salinity that are partly associated with maintaining low cytosolic Na(+) levels and a high K(+)/Na(+) ratio. Plant metabolites change with elevated Na(+), some changes are likely to help restore osmotic balance while others protect Na(+)-sensitive proteins. Metabolic responses to salt stress are described for two barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differed in salinity tolerance under the experimental conditions used. After 3 weeks of salt treatment, Clipper ceased growing whereas Sahara resumed growth similar to the control plants. Compared with Clipper, Sahara had significantly higher leaf Na(+) levels and less leaf necrosis, suggesting they are more tolerant to accumulated Na(+). Metabolite changes in response to the salt treatment also differed between the two cultivars. Clipper plants had elevated levels of amino acids, including proline and GABA, and the polyamine putrescine, consistent with earlier suggestions that such accumulation may be correlated with slower growth and/or leaf necrosis rather than being an adaptive response to salinity. It is suggested that these metabolites may be an indicator of general cellular damage in plants. By contrast, in the more tolerant Sahara plants, the levels of the hexose phosphates, TCA cycle intermediates, and metabolites involved in cellular protection increased in response to salt. These solutes remain unchanged in the more sensitive Clipper plants. It is proposed that these responses in the more tolerant Sahara are involved in cellular protection in the leaves and are involved in the tolerance of Sahara leaves to high Na(+).
  • Item
    Thumbnail Image
    A tandem liquid chromatography-mass spectrometry (LC-MS) method for profiling small molecules in complex samples
    Pyke, JS ; Callahan, DL ; Kanojia, K ; Bowne, J ; Sahani, S ; Tull, D ; Bacic, A ; McConville, MJ ; Roessner, U (SPRINGER, 2015-12)
  • Item
    Thumbnail Image
    MASTR-MS: a web-based collaborative laboratory information management system (LIMS) for metabolomics
    Hunter, A ; Dayalan, S ; De Souza, D ; Power, B ; Lorrimar, R ; Szabo, T ; Thu, N ; O'Callaghan, S ; Hack, J ; Pyke, J ; Nahid, A ; Barrero, R ; Roessner, U ; Likic, V ; Tull, D ; Bacic, A ; McConville, M ; Bellgard, M (SPRINGER, 2017-02)
    BACKGROUND: An increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments. RESULTS: Here we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS. CONCLUSION: MASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research community. It is freely available under the GNU GPL v3 licence and can be accessed from, https://muccg.github.io/mastr-ms/.
  • Item
    Thumbnail Image
    Exploratory analysis of high-throughput metabolomic data
    Wijetunge, CD ; Li, Z ; Saeed, I ; Bowne, J ; Hsu, AL ; Roessner, U ; Bacic, A ; Halgamuge, SK (SPRINGER, 2013-12)
  • Item
    Thumbnail Image
    Mass spectrometry imaging for plant biology: a review
    Boughton, BA ; Thinagaran, D ; Sarabia, D ; Bacic, A ; Roessner, U (SPRINGER, 2016-06)
    Mass spectrometry imaging (MSI) is a developing technique to measure the spatio-temporal distribution of many biomolecules in tissues. Over the preceding decade, MSI has been adopted by plant biologists and applied in a broad range of areas, including primary metabolism, natural products, plant defense, plant responses to abiotic and biotic stress, plant lipids and the developing field of spatial metabolomics. This review covers recent advances in plant-based MSI, general aspects of instrumentation, analytical approaches, sample preparation and the current trends in respective plant research.
  • Item
    Thumbnail Image
    PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools
    O'Callaghan, S ; De Souza, DP ; Isaac, A ; Wang, Q ; Hodkinson, L ; Olshansky, M ; Erwin, T ; Appelbe, B ; Tull, DL ; Roessner, U ; Bacic, A ; McConville, MJ ; Likic, VA (BMC, 2012-05-30)
    BACKGROUND: Gas chromatography-mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. RESULTS: PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). CONCLUSIONS: PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface.
  • Item
    Thumbnail Image
    Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology
    Hill, CB ; Taylor, JD ; Edwards, J ; Mather, D ; Langridge, P ; Bacic, A ; Roessner, U (ELSEVIER IRELAND LTD, 2015-04)
    Mapping of quantitative trait loci associated with levels of individual metabolites (mQTL) was combined with the mapping of agronomic traits to investigate the genetic basis of variation and co-variation in metabolites, agronomic traits, and plant phenology in a field-grown bread wheat population. Metabolome analysis was performed using liquid chromatography-mass spectrometry resulting in identification of mainly polar compounds, including secondary metabolites. A total of 558 metabolic features were obtained from the flag leaves of 179 doubled haploid lines, of which 197 features were putatively identified, mostly as alkaloids, flavonoids and phenylpropanoids. Coordinated genetic control was observed for several groups of metabolites, such as organic acids influenced by two loci on chromosome 7A. Five major phenology-related loci, which were introduced as cofactors in the analyses, differed in their impact upon metabolic and agronomic traits with QZad-aww-7A having more impact on the expression of both metabolite and agronomic QTL than Ppd-B1, Vrn-A1, Eps, and QZad-aww-7D. This QTL study validates the utility of combining agronomic and metabolomic traits as an approach to identify potential trait enhancement targets for breeding selection and reinforces previous results that demonstrate the importance of including plant phenology in the assessment of useful traits in this wheat mapping population.