School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 21
  • Item
    Thumbnail Image
    Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies.
    Martelli, F ; Hernandes, NH ; Zuo, Z ; Wang, J ; Wong, C-O ; Karagas, NE ; Roessner, U ; Rupasinghe, T ; Robin, C ; Venkatachalam, K ; Perry, T ; Batterham, P ; Bellen, HJ (eLife Sciences Publications, Ltd, 2022-02-22)
    Large-scale insecticide application is a primary weapon in the control of insect pests in agriculture. However, a growing body of evidence indicates that it is contributing to the global decline in population sizes of many beneficial insect species. Spinosad emerged as an organic alternative to synthetic insecticides and is considered less harmful to beneficial insects, yet its mode of action remains unclear. Using Drosophila, we show that low doses of spinosad antagonize its neuronal target, the nicotinic acetylcholine receptor subunit alpha 6 (nAChRα6), reducing the cholinergic response. We show that the nAChRα6 receptors are transported to lysosomes that become enlarged and increase in number upon low doses of spinosad treatment. Lysosomal dysfunction is associated with mitochondrial stress and elevated levels of reactive oxygen species (ROS) in the central nervous system where nAChRα6 is broadly expressed. ROS disturb lipid storage in metabolic tissues in an nAChRα6-dependent manner. Spinosad toxicity is ameliorated with the antioxidant N-acetylcysteine amide. Chronic exposure of adult virgin females to low doses of spinosad leads to mitochondrial defects, severe neurodegeneration, and blindness. These deleterious effects of low-dose exposures warrant rigorous investigation of its impacts on beneficial insects.
  • Item
    Thumbnail Image
    Characterization of epidermal bladder cells in Chenopodium quinoa
    Otterbach, SL ; Khoury, H ; Rupasinghe, T ; Mendis, H ; Kwan, KH ; Lui, V ; Natera, SHA ; Klaiber, I ; Allen, NM ; Jarvis, DE ; Tester, M ; Roessner, U ; Schmoeckel, SM (WILEY, 2021-10-05)
    Chenopodium quinoa (quinoa) is considered a superfood with its favourable nutrient composition and being gluten free. Quinoa has high tolerance to abiotic stresses, such as salinity, water deficit (drought) and cold. The tolerance mechanisms are yet to be elucidated. Quinoa has epidermal bladder cells (EBCs) that densely cover the shoot surface, particularly the younger parts of the plant. Here, we report on the EBC's primary and secondary metabolomes, as well as the lipidome in control conditions and in response to abiotic stresses. EBCs were isolated from plants after cold, heat, high-light, water deficit and salt treatments. We used untargeted gas chromatography-mass spectrometry (GC-MS) to analyse metabolites and untargeted and targeted liquid chromatography-MS (LC-MS) for lipids and secondary metabolite analyses. We identified 64 primary metabolites, including sugars, organic acids and amino acids, 19 secondary metabolites, including phenolic compounds, betanin and saponins and 240 lipids categorized in five groups including glycerolipids and phospholipids. We found only few changes in the metabolic composition of EBCs in response to abiotic stresses; these were metabolites related with heat, cold and high-light treatments but not salt stress. Na+ concentrations were low in EBCs with all treatments and approximately two orders of magnitude lower than K+ concentrations.
  • Item
    Thumbnail Image
    Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species
    Kiani-Pouya, A ; Roessner, U ; Jayasinghe, NS ; Lutz, A ; Rupasinghe, T ; Bazihizina, N ; Bohm, J ; Alharbi, S ; Hedrich, R ; Shabala, S (WILEY, 2017-09-01)
    Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K+ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations.
  • Item
    Thumbnail Image
    Lipidomics reveal the protective effects of a vegetable-derived isothiocyanate against retinal degeneration
    Kwa, FA ; Dulull, NK ; Roessner, U ; Dias, DA ; Rupasinghe, TW (F1000 Research Ltd, 2020-02-20)
    Background:Age-related macular degeneration (AMD) is a leading cause of blindness in the ageing population. Without effective treatment strategies that can prevent disease progression, there is an urgent need for novel therapeutic interventions to reduce the burden of vision loss and improve patients’ quality of life. Dysfunctional innate immune responses to oxidative stress observed in AMD can be caused by the formation of oxidised lipids, whilst polyunsaturated fatty acids have shown to increase the risk of AMD and disease progression in affected individuals. Previously, our laboratory has shown that the vegetable-derived isothiocyanate, L-sulforaphane (LSF), can protect human adult pigment epithelial cells from oxidative damage by upregulating gene expression of the oxidative stress enzyme Glutathione-S-Transferase µ1. This study aims to validate the protective effects of LSF on human retinal cells under oxidative stress conditions and to reveal the key players in fatty acid and lipid metabolism that may facilitate this protection.Methods:Thein vitrooxidative stress model of AMD was based on the exposure of an adult retinal pigment epithelium-19 cell line to 200µM hydrogen peroxide. Percentage cell proliferation following LSF treatment was measured using tetrazolium salt-based assays. Untargeted fatty acid profiling was performed by gas chromatography-mass spectrometry. Untargeted lipid profiling was performed by liquid chromatography-mass spectrometry.Results:Under hydrogen peroxide-induced oxidative stress conditions, LSF treatment induced dose-dependent cell proliferation. The key fatty acids that were increased by LSF treatment of the retinal cells include oleic acid and eicosatrienoic acid. LSF treatment also increased levels of the lipid classes phosphatidylcholine, cholesteryl ester and oxo-phytodienoic acid but decreased levels of phosphatidylethanolamine lipids.Conclusions:We propose that retinal cells at risk of oxidative damage and apoptosis can be pre-conditioned with LSF to regulate levels of selected fatty acids and lipids known to be implicated in the pathogenesis and progression of AMD.
  • Item
    Thumbnail Image
    Lipidomics reveal the protective effects of a vegetable-derived isothiocyanate against retinal degeneration.
    Kwa, FA ; Dulull, NK ; Roessner, U ; Dias, DA ; Rupasinghe, TW (F1000 Research Ltd, 2019)
    Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the ageing population. Without effective treatment strategies that can prevent disease progression, there is an urgent need for novel therapeutic interventions to reduce the burden of vision loss and improve patients' quality of life. Dysfunctional innate immune responses to oxidative stress observed in AMD can be caused by the formation of oxidised lipids, whilst polyunsaturated fatty acids have shown to increase the risk of AMD and disease progression in affected individuals. Previously, our laboratory has shown that the vegetable-derived isothiocyanate, L-sulforaphane (LSF), can protect human adult pigment epithelial cells from oxidative damage by upregulating gene expression of the oxidative stress enzyme Glutathione-S-Transferase µ1. This study aims to validate the protective effects of LSF on human retinal cells under oxidative stress conditions and to reveal the key players in fatty acid and lipid metabolism that may facilitate this protection. Methods: The in vitro oxidative stress model of AMD was based on the exposure of an adult retinal pigment epithelium-19 cell line to 200µM hydrogen peroxide. Percentage cell proliferation following LSF treatment was measured using tetrazolium salt-based assays. Untargeted fatty acid profiling was performed by gas chromatography-mass spectrometry. Untargeted lipid profiling was performed by liquid chromatography-mass spectrometry. Results: Under hydrogen peroxide-induced oxidative stress conditions, LSF treatment induced dose-dependent cell proliferation. The key fatty acids that were increased by LSF treatment of the retinal cells include oleic acid and eicosatrienoic acid. LSF treatment also increased levels of the lipid classes phosphatidylcholine, cholesteryl ester and oxo-phytodienoic acid but decreased levels of phosphatidylethanolamine lipids. Conclusions: We propose that retinal cells at risk of oxidative damage and apoptosis can be pre-conditioned with LSF to regulate levels of selected fatty acids and lipids known to be implicated in the pathogenesis and progression of AMD.
  • Item
    Thumbnail Image
    Relaxin reduces endothelium-derived vasoconstriction in hypertension: Revealing new therapeutic insights
    Leo, CH ; Ng, HH ; Marshall, SA ; Jelinic, M ; Rupasinghe, T ; Qin, C ; Roessner, U ; Ritchie, RH ; Tare, M ; Parry, LJ (WILEY, 2019-10-31)
    BACKGROUND AND PURPOSE: Endothelium-derived vasoconstriction is a hallmark of vascular dysfunction in hypertension. In some cases, an overproduction of endothelium-derived prostacyclin (PGI2 ) can cause contraction rather than relaxation. Relaxin is well known for its vasoprotective actions, but the possibility that this peptide could also reverse endothelium-derived vasoconstriction has never been investigated. We tested the hypothesis that short-term relaxin treatment mitigates endothelium-derived vasoconstriction in spontaneously hypertensive rats (SHR). EXPERIMENTAL APPROACH: Male Wistar Kyoto rats (WKY) and SHR were subcutaneously infused with either vehicle (20 mmol·L-1 sodium acetate) or relaxin (13.3 μg·kg-1 ·hr-1 ) using osmotic minipumps for 3 days. Vascular reactivity to the endothelium-dependent agonist ACh was assessed in vitro by wire myography. Quantitative PCR and LC-MS were used to identify changes in gene expression of prostanoid pathways and PG production, respectively. KEY RESULTS: Relaxin treatment ameliorated hypertension-induced endothelial dysfunction by increasing NO-dependent relaxation and reducing endothelium-dependent contraction. Notably, short-term relaxin treatment up-regulated mesenteric PGI2 receptor (IP) expression, permitting PGI2 -IP-mediated vasorelaxation. In the aorta, reversal of contraction was accompanied by suppression of the hypertension-induced increase in prostanoid-producing enzymes and reduction in PGI2 -evoked contractions. CONCLUSIONS AND IMPLICATIONS: Relaxin has region-dependent vasoprotective actions in hypertension. Specifically, relaxin has distinct effects on endothelium-derived contracting factors and their associated vasoconstrictor pathways in mesenteric arteries and the aorta. Taken together, these observations reveal the potential of relaxin as a new therapeutic agent for vascular disorders that are associated with endothelium-derived vasoconstriction including hypertension.
  • Item
    Thumbnail Image
    Androgen receptor antagonism accelerates disease onset in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis
    McLeod, VM ; Lau, CL ; Chiam, MDF ; Rupasinghe, TW ; Roessner, U ; Djouma, E ; Boon, WC ; Turner, BJ (WILEY, 2019-07-01)
    BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease typically more common in males, implicating androgens in progression of both patients and mouse models. Androgen effects are mediated by androgen receptor which is highly expressed in spinal motor neurons and skeletal muscles. To clarify the role of androgen receptors in ALS, we therefore examined the effect of androgen receptor antagonism in the SOD1G93A mouse model. EXPERIMENTAL APPROACH: The androgen receptor antagonist, flutamide, was administered to presymptomatic SOD1G93A mice as a slow-release subcutaneous implant (5 mg·day-1 ). Testosterone, flutamide, and metabolite levels were measured in blood and spinal cord tissue by LC-MS-MS. Effects on disease onset and progression were assessed using motor function tests, survival, muscle, and neuropathological analyses. KEY RESULTS: Flutamide was metabolised to 2-hydroxyflutamide achieving steady-state plasma levels across the study duration and reached the spinal cord at pharmacologically active concentrations. Flutamide treatment accelerated disease onset and locomotor dysfunction in male SOD1G93A mice, but not female mice, without affecting survival. Analysis of hindlimb muscles revealed exacerbation of myofibre atrophy in male SOD1G93A mice treated with flutamide, although motor neuron pathology was not affected. CONCLUSION AND IMPLICATIONS: The androgen receptor antagonist accelerated disease onset in male SOD1G93A mice, leading to exacerbated muscle pathology, consistent with a role of androgens in modulating disease severity, sexual dimorphism, and peripheral pathology in ALS. These results also demonstrate a key contribution of skeletal muscle pathology to disease onset, but not outcome, in this mouse model of ALS.
  • Item
    Thumbnail Image
    Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum
    Barkla, BJ ; Garibay-Hernandez, A ; Melzer, M ; Rupasinghe, TWT ; Roessner, U (WILEY, 2018-10-01)
    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study, alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and phospholipase D delta suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates that the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion.
  • Item
    Thumbnail Image
    An Arabidopsis lipid map reveals differences between tissues and dynamic changes throughout development
    Kehelpannala, C ; Rupasinghe, T ; Pasha, A ; Esteban, E ; Hennessy, T ; Bradley, D ; Ebert, B ; Provart, NJ ; Roessner, U (WILEY, 2021-05-24)
    Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi.
  • Item
    Thumbnail Image
    Edaphic niche characterization of four Proteaceae reveals unique calcicole physiology linked to hyper-endemism ofGrevillea thelemanniana
    Gao, J ; Wang, F ; Ranathunge, K ; Arruda, AJ ; Cawthray, GR ; Clode, PL ; He, X ; Leopold, M ; Roessner, U ; Rupasinghe, T ; Zhong, H ; Lambers, H (WILEY, 2020-11)
    Endemism and rarity have long intrigued scientists. We focused on a rare endemic and critically‐endangered species in a global biodiversity hotspot, Grevillea thelemanniana (Proteaceae). We carried out plant and soil analyses of four Proteaceae, including G. thelemanniana, and combined these with glasshouse studies. The analyses related to hydrology and plant water relations as well as soil nutrient concentrations and plant nutrition, with an emphasis on sodium (Na) and calcium (Ca). The local hydrology and matching plant traits related to water relations partially accounted for the distribution of the four Proteaceae. What determined the rarity of G. thelemanniana, however, was its accumulation of Ca. Despite much higher total Ca concentrations in the leaves of the rare G. thelemanniana than in the common Proteaceae, very few Ca crystals were detected in epidermal or mesophyll cells. Instead of crystals, G. thelemanniana epidermal cell vacuoles contained exceptionally high concentrations of noncrystalline Ca. Calcium ameliorated the negative effects of Na on the very salt‐sensitive G. thelemanniana. Most importantly, G. thelemanniana required high concentrations of Ca to balance a massively accumulated feeding‐deterrent carboxylate, trans‐aconitate. This is the first example of a calcicole species accumulating and using Ca to balance accumulation of an antimetabolite.