School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species
    Kiani-Pouya, A ; Roessner, U ; Jayasinghe, NS ; Lutz, A ; Rupasinghe, T ; Bazihizina, N ; Bohm, J ; Alharbi, S ; Hedrich, R ; Shabala, S (WILEY, 2017-09)
    Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K+ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations.
  • Item
    Thumbnail Image
    Lipidomics reveal the protective effects of a vegetable-derived isothiocyanate against retinal degeneration.
    Kwa, FA ; Dulull, NK ; Roessner, U ; Dias, DA ; Rupasinghe, TW (F1000 Research Ltd, 2019)
    Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the ageing population. Without effective treatment strategies that can prevent disease progression, there is an urgent need for novel therapeutic interventions to reduce the burden of vision loss and improve patients' quality of life. Dysfunctional innate immune responses to oxidative stress observed in AMD can be caused by the formation of oxidised lipids, whilst polyunsaturated fatty acids have shown to increase the risk of AMD and disease progression in affected individuals. Previously, our laboratory has shown that the vegetable-derived isothiocyanate, L-sulforaphane (LSF), can protect human adult pigment epithelial cells from oxidative damage by upregulating gene expression of the oxidative stress enzyme Glutathione-S-Transferase µ1. This study aims to validate the protective effects of LSF on human retinal cells under oxidative stress conditions and to reveal the key players in fatty acid and lipid metabolism that may facilitate this protection. Methods: The in vitro oxidative stress model of AMD was based on the exposure of an adult retinal pigment epithelium-19 cell line to 200µM hydrogen peroxide. Percentage cell proliferation following LSF treatment was measured using tetrazolium salt-based assays. Untargeted fatty acid profiling was performed by gas chromatography-mass spectrometry. Untargeted lipid profiling was performed by liquid chromatography-mass spectrometry. Results: Under hydrogen peroxide-induced oxidative stress conditions, LSF treatment induced dose-dependent cell proliferation. The key fatty acids that were increased by LSF treatment of the retinal cells include oleic acid and eicosatrienoic acid. LSF treatment also increased levels of the lipid classes phosphatidylcholine, cholesteryl ester and oxo-phytodienoic acid but decreased levels of phosphatidylethanolamine lipids. Conclusions: We propose that retinal cells at risk of oxidative damage and apoptosis can be pre-conditioned with LSF to regulate levels of selected fatty acids and lipids known to be implicated in the pathogenesis and progression of AMD.
  • Item
    Thumbnail Image
    Androgen receptor antagonism accelerates disease onset in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    McLeod, VM ; Lau, CL ; Chiam, MDF ; Rupasinghe, TW ; Roessner, U ; Djouma, E ; Boon, WC ; Turner, BJ (WILEY, 2019-07)
    BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease typically more common in males, implicating androgens in progression of both patients and mouse models. Androgen effects are mediated by androgen receptor which is highly expressed in spinal motor neurons and skeletal muscles. To clarify the role of androgen receptors in ALS, we therefore examined the effect of androgen receptor antagonism in the SOD1G93A mouse model. EXPERIMENTAL APPROACH: The androgen receptor antagonist, flutamide, was administered to presymptomatic SOD1G93A mice as a slow-release subcutaneous implant (5 mg·day-1 ). Testosterone, flutamide, and metabolite levels were measured in blood and spinal cord tissue by LC-MS-MS. Effects on disease onset and progression were assessed using motor function tests, survival, muscle, and neuropathological analyses. KEY RESULTS: Flutamide was metabolised to 2-hydroxyflutamide achieving steady-state plasma levels across the study duration and reached the spinal cord at pharmacologically active concentrations. Flutamide treatment accelerated disease onset and locomotor dysfunction in male SOD1G93A mice, but not female mice, without affecting survival. Analysis of hindlimb muscles revealed exacerbation of myofibre atrophy in male SOD1G93A mice treated with flutamide, although motor neuron pathology was not affected. CONCLUSION AND IMPLICATIONS: The androgen receptor antagonist accelerated disease onset in male SOD1G93A mice, leading to exacerbated muscle pathology, consistent with a role of androgens in modulating disease severity, sexual dimorphism, and peripheral pathology in ALS. These results also demonstrate a key contribution of skeletal muscle pathology to disease onset, but not outcome, in this mouse model of ALS.
  • Item
    Thumbnail Image
    Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum
    Barkla, BJ ; Garibay-Hernandez, A ; Melzer, M ; Rupasinghe, TWT ; Roessner, U (WILEY, 2018-10)
    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study, alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and phospholipase D delta suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates that the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion.
  • Item
    Thumbnail Image
    Roots of the Resurrection Plant Tripogon loliiformis Survive Desiccation Without the Activation of Autophagy Pathways by Maintaining Energy Reserves
    Asami, P ; Rupasinghe, T ; Moghaddam, L ; Njaci, I ; Roessner, U ; Mundree, S ; Williams, B (FRONTIERS MEDIA SA, 2019-04-25)
    Being sessile, plants must regulate energy balance, potentially via source-sink relations, to compromise growth with survival in stressful conditions. Crops are sensitive, possibly because they allocate their energy resources toward growth and yield rather than stress tolerance. In contrast, resurrection plants tightly regulate sugar metabolism and use a series of physiological adaptations to suppress cell death in their vegetative tissue to regain full metabolic capacity from a desiccated state within 72 h of watering. Previously, we showed that shoots of the resurrection plant Tripogon loliiformis, initiate autophagy upon dehydration as one strategy to reinstate homeostasis and suppress cell death. Here, we describe the relationship between energy status, sugar metabolism, trehalose-mediated activation of autophagy pathways and investigate whether shoots and roots utilize similar desiccation tolerance strategies. We show that despite containing high levels of trehalose, dehydrated Tripogon roots do not display elevated activation of autophagy pathways. Using targeted and non-targeted metabolomics, transmission electron microscopy (TEM) and transcriptomics we show that T. loliiformis engages a strategy similar to the long-term drought responses of sensitive plants and continues to use the roots as a sink even during sustained stress. Dehydrating T. loliiformis roots contained more sucrose and trehalose-6-phosphate compared to shoots at an equivalent water content. The increased resources in the roots provides sufficient energy to cope with stress and thus autophagy is not required. These results were confirmed by the absence of autophagosomes in roots by TEM. Upregulation of sweet genes in both shoots and roots show transcriptional regulation of sucrose translocation from leaves to roots and within roots during dehydration. Differences in the cell's metabolic status caused starkly different cell death responses between shoots and roots. These findings show how shoots and roots utilize different stress response strategies and may provide candidate targets that can be used as tools for the improvement of stress tolerance in crops.
  • Item
    Thumbnail Image
    The PHO signaling pathway directs lipid remodeling in Cryptococcus neoformans via DGTS synthase to recycle phosphate during phosphate deficiency
    Lev, S ; Rupasinghe, T ; Desmarini, D ; Kaufman-Francis, K ; Sorrell, TC ; Roessner, U ; Djordjevic, JT ; Bahn, Y-S (PUBLIC LIBRARY SCIENCE, 2019-02-21)
    The phosphate sensing and acquisition (PHO) pathway of Cryptococcus neoformans is essential for growth in phosphate-limiting conditions and for dissemination of infection in a mouse model. Its key transcription factor, Pho4, regulates expression of genes controlling the acquisition of phosphate from both external and cellular sources. One such gene, BTA1, is highly up-regulated during phosphate starvation. Given that a significant proportion of cellular phosphate is incorporated into phospholipids, and that the Pho4-dependent BTA1 gene encodes an enzyme predicted to catalyse production of a phosphorus-free betaine lipid, we investigated whether phospholipids provide an accessible reservoir of phosphate during phosphate deficiency. By comparing lipid profiles of phosphate-starved WT C. neoformans, PHO4 (pho4Δ) and BTA1 (bta1Δ) deletion mutants using thin layer chromatography and liquid chromatography mass spectrometry, we showed that phosphatidylcholine (PC) is substituted by the phosphorus-free betaine lipids diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) and diacylgyceryl hydroxymethyl-N,N,N-trimethyl-beta-alanine (DGTA) in a Pho4- and Bta1-dependent manner, and that BTA1 encodes a functional DGTS synthase. Synthesis of DGTA tightly correlated with that of DGTS, consistent with DGTS being the precursor of DGTA. Similar to pho4Δ, bta1Δ grew more slowly than WT in cell culture medium (RPMI) and was hypovirulent in a murine model of cryptococcosis. In contrast to pho4Δ, bta1Δ tolerated alkaline pH and disseminated to the brain. Our results demonstrate that Bta1-dependent substitution of PC by betaine lipids is tightly regulated in C. neoformans by the PHO pathway, to conserve phosphate and preserve membrane integrity and function. This phospholipid remodeling strategy may also contribute to cryptococcal virulence during host infection.
  • Item
    Thumbnail Image
    Phenotyping reproductive stage chilling and frost tolerance in wheat using targeted metabolome and lipidome profiling
    Cheong, BE ; Ho, WWH ; Biddulph, B ; Wallace, X ; Rathjen, T ; Rupasinghe, TWT ; Roessner, U ; Dolferus, R (SPRINGER, 2019-11)
    INTRODUCTION: Frost events lead to A$360 million of yield losses annually to the Australian wheat industry, making improvement of chilling and frost tolerance an important trait for breeding. OBJECTIVES: This study aimed to use metabolomics and lipidomics to explore genetic variation in acclimation potential to chilling and to identify metabolite markers for chilling tolerance in wheat. METHODS: We established a controlled environment screening assay that is able to reproduce field rankings of wheat germplasm for chilling and frost tolerance. This assay, together with targeted metabolomics and lipidomics approaches, were used to compare metabolite and lipid levels in flag leaves of two wheat varieties with contrasting chilling tolerance. RESULTS: The sensitive variety Wyalkatchem showed a strong reduction in amino acids after the first cold night, followed by accumulation of osmolytes such as fructose, glucose, putrescine and shikimate over a 4-day period. Accumulation of osmolytes is indicative of acclimation to water stress in Wyalkatchem. This response was not observed for tolerant variety Young. The two varieties also displayed significant differences in lipid accumulation. Variation in two lipid clusters, resulted in a higher unsaturated to saturated lipid ratio in Young after 4 days cold treatment and the lipids PC(34:0), PC(34:1), PC(35:1), PC(38:3), and PI(36:4) were the main contributors to the unsaturated to saturated ratio change. This indicates that Young may have superior ability to maintain membrane fluidity following cold exposure, thereby avoiding membrane damage and water stress observed for Wyalkatchem. CONCLUSION: Our study suggests that metabolomics and lipidomics markers could be used as an alternative phenotyping method to discriminate wheat varieties with differences in cold acclimation.
  • Item
    Thumbnail Image
    Spatio-Temporal Metabolite and Elemental Profiling of Salt Stressed Barley Seeds During Initial Stages of Germination by MALDI-MSI and mu-XRF Spectrometry
    Gupta, S ; Rupasinghe, T ; Callahan, DL ; Natera, SHA ; Smith, PMC ; Hill, CB ; Roessner, U ; Boughton, BA (Frontiers Media, 2019-09-25)
    Seed germination is the essential first step in crop establishment, and can be severely affected by salinity stress which can inhibit essential metabolic processes during the germination process. Salt stress during seed germination can trigger lipid-dependent signalling cascades that activate plant adaptation processes, lead to changes in membrane fluidity to help resist the stress, and cause secondary metabolite responses due to increased oxidative stress. In germinating barley (Hordeum vulgare), knowledge of the changes in spatial distribution of lipids and other small molecules at a cellular level in response to salt stress is limited. In this study, mass spectrometry imaging (MSI), liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray fluorescence (XRF) were used to determine the spatial distribution of metabolites, lipids and a range of elements, such as K+ and Na+, in seeds of two barley genotypes with contrasting germination phenology (Australian barley varieties Mundah and Keel). We detected and tentatively identified more than 200 lipid species belonging to seven major lipid classes (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, prenol lipids, sterol lipids, and polyketides) that differed in their spatial distribution based on genotype (Mundah or Keel), time post-imbibition (0 to 72 h), or treatment (control or salt). We found a tentative flavonoid was discriminant in post-imbibed Mundah embryos under saline conditions, and a delayed flavonoid response in Keel relative to Mundah. We further employed MSI-MS/MS and LC-QToF-MS/MS to explore the identity of the discriminant flavonoid and study the temporal pattern in five additional barley genotypes. ICP-MS was used to quantify the elemental composition of both Mundah and Keel seeds, showing a significant increase in Na+ in salt treated samples. Spatial mapping of elements using µ-XRF localized the elements within the seeds. This study integrates data obtained from three mass spectrometry platforms together with µ-XRF to yield information on the localization of lipids, metabolites and elements improving our understanding of the germination process under salt stress at a molecular level.
  • Item
    Thumbnail Image
    RNA Catabolites Contribute to the Nitrogen Pool and Support Growth Recovery of Wheat
    Melino, VJ ; Casartelli, A ; George, J ; Rupasinghe, T ; Roessner, U ; Okamoto, M ; Heuer, S (FRONTIERS MEDIA SA, 2018-11-02)
    Turn-over of RNA and catabolism of nucleotides releases one to four ammonia molecules; the released nutrients being reassimilated into primary metabolism. Preliminary evidence indicates that monocots store high levels of free nucleotides and nucleosides but their potential as a source of internal organic nitrogen for use and remobilization is uncharted. Early tillering wheat plants were therefore starved of N over a 5-day time-course with examination of nucleic acid yields in whole shoots, young and old leaves and roots. Nucleic acids constituted ∼4% of the total N pool of N starved wheat plants, which was comparable with the N available from nitrate (NO3 -) and greater than that available from the sum of 20 proteinogenic amino acids. Methods were optimized to detect nucleotide (purine and pyrimidine) metabolites, and wheat orthologs of RNA degradation (TaRNS), nucleoside transport (TaENT1, TaENT3) and salvage (TaADK) were identified. It was found that N starved wheat roots actively catabolised RNA and specific purines but accumulated pyrimidines. Reduced levels of RNA corresponded with induction of TaRNS2, TaENT1, TaENT3, and TaADK in the roots. Reduced levels of GMP, guanine, xanthine, allantoin, allantoate and glyoxylate in N starved roots correlated with accumulation of allantoate and glyoxylate in the oldest leaf, suggesting translocation of allantoin. Furthermore, N starved wheat plants exogenously supplied with N in the form of purine catabolites grew and photosynthesized as well as those plants re-supplied with NO3 -. These results support the hypothesis that the nitrogen and carbon recovered from purine metabolism can support wheat growth.
  • Item
    Thumbnail Image
    High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress
    Sarabia, LD ; Boughton, BA ; Rupasinghe, T ; van de Meene, AML ; Callahan, DL ; Hill, CB ; Roessner, U (SPRINGER, 2018-05)
    INTRODUCTION: Mass spectrometry imaging (MSI) is a technology that enables the visualization of the spatial distribution of hundreds to thousands of metabolites in the same tissue section simultaneously. Roots are below-ground plant organs that anchor plants to the soil, take up water and nutrients, and sense and respond to external stresses. Physiological responses to salinity are multifaceted and have predominantly been studied using whole plant tissues that cannot resolve plant salinity responses spatially. OBJECTIVES: This study aimed to use a comprehensive approach to study the spatial distribution and profiles of metabolites, and to quantify the changes in the elemental content in young developing barley seminal roots before and after salinity stress. METHODS: Here, we used a combination of liquid chromatography-mass spectrometry (LC-MS), inductively coupled plasma mass spectrometry (ICP-MS), and matrix-assisted laser desorption/ionization (MALDI-MSI) platforms to profile and analyze the spatial distribution of ions, metabolites and lipids across three anatomically different barley root zones before and after a short-term salinity stress (150 mM NaCl). RESULTS: We localized, visualized and discriminated compounds in fine detail along longitudinal root sections and compared ion, metabolite, and lipid composition before and after salt stress. Large changes in the phosphatidylcholine (PC) profiles were observed as a response to salt stress with PC 34:n showing an overall reduction in salt treated roots. ICP-MS analysis quantified changes in the elemental content of roots with increases of Na+ and decreases of K+ content. CONCLUSION: Our results established the suitability of combining three mass spectrometry platforms to analyze and map ionic and metabolic responses to salinity stress in plant roots and to elucidate tolerance mechanisms in response to abiotic stress, such as salinity stress.