School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Modulators or facilitators? Roles of lipids in plant root-microbe interactions
    Macabuhay, A ; Arsova, B ; Walker, R ; Johnson, A ; Watt, M ; Roessner, U (CELL PRESS, 2022-02)
    Lipids have diverse functions in regulating the plasma membrane's cellular processes and signaling mediation. Plasma membrane lipids are also involved in the plant's complex interactions with the surrounding microorganisms, with which plants are in various forms of symbiosis. The roles of lipids influence the whole microbial colonization process, thus shaping the rhizomicrobiome. As chemical signals, lipids facilitate the stages of rhizospheric interactions - from plant root to microbe, microbe to microbe, and microbe to plant root - and modulate the plant's defense responses upon perception or contact with either beneficial or phytopathogenic microorganisms. Although studies have come a long way, further investigation is needed to discover more lipid species and elucidate novel lipid functions and profiles under various stages of plant root-microbe interactions.
  • Item
    Thumbnail Image
    Wheat Can Access Phosphorus From Algal Biomass as Quickly and Continuously as From Mineral Fertilizer
    Mau, L ; Kant, J ; Walker, R ; Kuchendorf, CM ; Schrey, SD ; Roessner, U ; Watt, M (FRONTIERS MEDIA SA, 2021-01-28)
    Algae can efficiently take up excess nutrients from waterways, making them a valuable resource potentially capable of replacing synthesized and mined fertilizers for agriculture. The capacity of algae to fertilize crops has been quantified, but it is not known how the algae-derived nutrients become available to plants. We aimed to address this question: what are the temporal dynamics of plant growth responses to algal biomass? to better propose mechanisms by which plants acquire nutrients from algal biomass and thereby study and promote those processes in future agricultural applications. Data from various sources were transformed and used to reconstruct the nutrient release from the algae Chlorella vulgaris and subsequent uptake by wheat (Triticum aestivum L.) (as reported in Schreiber et al., 2018). Plants had received 0.1x or 1x dried algae or wet algae, or zero, 0.1x or 1x mineral fertilizer calculated from agricultural practices for P application and grown to 55 days in three soils. Contents of P and other nutrients acquired from algae were as high as from mineral fertilizer, but varied based on moisture content and amount of algae applied to soils (by 55 days after sowing plants with 1x mineral fertilizer and 1x dried algae had 5.6 mg P g DWshoot; 2.2-fold more than those with 0 or 0.1x mineral fertilizer, 0.1x dried algae and wet algae, and 1x wet algae). Absolute and relative leaf area growth and estimated P uptake rates showed similar dynamics, indicating that wheat acquires P from algae quickly. A model proposes that algal fertilizer promotes wheat growth after rapid transformation in soil to inorganic nutrients. We conclude theoretically that phosphorus from algal biomass is available to wheat seedlings upon its application and is released gradually over time with minor differences related to moisture content on application. The growth and P uptake kinetics hint at nutrient forms, including N, and biomass stimulation worthy of research to further exploit algae in sustainable agriculture practices. Temporal resolved phenotype analyses in combination with a mass-balance approach is helpful for understanding resource uptake from recycled and biofertilizer sources by plants.
  • Item
    Thumbnail Image
    Time-resolution of the shoot and root growth of the model cereal Brachypodium in response to inoculation with Azospirillum bacteria at low phosphorus and temperature
    Schillaci, M ; Arsova, B ; Walker, R ; Smith, PMC ; Nagel, KA ; Roessner, U ; Watt, M (Springer Verlag, 2021-01)
    A non-invasive plant phenotyping platform, GrowScreen-PaGe, was used to resolve the dynamics of shoot and root growth of the model cereal Brachypodium (Brachypodium distachyon Bd21-3) in response to the plant growth promoting (PGP) bacteria Azospirillum (Azospirillum brasilense Sp245). Inoculated Brachypodium plants had greater early vigor and higher P use efficiency than non-inoculated Brachypodium at low P and low temperature conditions. Root systems were imaged non-invasively at eight time points and data combined with leaf area, shoot biomass and nutrient content from destructive subsamples at 7, 14 and 21 days after inoculation (DAI). Azospirillum colonisation of roots improved Brachypodium shoot and, to a greater degree, root growth in three independent experiments. Inoculation promoted P use efficiency in shoots but not P concentration or uptake, despite increased total root length. Longer roots in inoculated plants arose from twofold faster branch root growth but slower axile root growth, detected at 11 DAI. Analysis of the spatio-temporal phenotypes indicated that the effects of Azospirillum inoculation increased as shoot P concentration declined, but the magnitude depended on the time after inoculation and growth rate of branch roots compared to axile roots. High throughput plant phenotyping platforms allow the details of plant-microorganism symbioses to be resolved, offering insights into the timing of changes in different tissues to allow molecular mechanisms to be determined.
  • Item
    Thumbnail Image
    Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions
    Gupta, S ; Schillaci, M ; Walker, R ; Smith, PMC ; Watt, M ; Roessner, U (SPRINGER, 2020-07-09)
    Salinization of soil with sodium chloride ions inhibits plant functions, causing reduction of yield of crops. Salt tolerant microorganisms have been studied to enhance crop growth under salinity. This review describes the performance of endophytic fungi applied to crops as a supplement to plant genetics or soil management to alleviate salt stress in crops. This is achieved via inducing systemic resistance, increasing the levels of beneficial metabolites, activating antioxidant systems to scavenge ROS, and modulating plant growth phytohormones. Colonization by endophytic fungi improves nutrient uptake and maintains ionic homeostasis by modulating ion accumulation, thereby restricting the transport of Na+ to leaves and ensuring a low cytosolic Na+:K+ ratio in plants. Participating endophytic fungi enhance transcripts of genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K+ channels KAT1 and KAT2, which play key roles in regulating Na+ and K+ homeostasis. Endophytic-induced interplay of strigolactones play regulatory roles in salt tolerance by interacting with phytohormones. Future research requires further attention on the biochemical, molecular and genetic mechanisms crucial for salt stress resistance requires further attention for future research. Furthermore, to design strategies for sustained plant health with endophytic fungi, a new wave of exploration of plant-endophyte responses to combinations of stresses is mandatory.