School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    steps: Software for spatially and temporally explicit population simulations
    Visintin, C ; Briscoe, NJ ; Woolley, SNC ; Lentini, PE ; Tingley, R ; Wintle, BA ; Golding, N ; Graham, L (WILEY, 2020-04)
    Abstract Species population dynamics are driven by spatial and temporal changes in the environment, anthropogenic activities and conservation management actions. Understanding how populations will change in response to these drivers is fundamental to a wide range of ecological applications, but there are few open‐source software options accessible to researchers and managers that allow them to predict these changes in a flexible and transparent way. We introduce an open‐source, multi‐platform r package, steps, that models spatial changes in species populations as a function of drivers of distribution and abundance, such as climate, disturbance, landscape dynamics and species ecological and physiological requirements. To illustrate the functionality of steps, we model the population dynamics of the greater glider Petauroides volans, an arboreal Australian mammal. We demonstrate how steps can be used to simulate population responses of the glider to forest dynamics and management with the types of data commonly used in ecological analyses. steps expands on the features found in existing software packages, can easily incorporate a range of spatial layers (e.g. habitat suitability, vegetation dynamics and disturbances), facilitates integrated and transparent analyses within a single platform and produces interpretable outputs of changes in species' populations through space and time. Further, steps offers both ready‐to‐use, built‐in functionality, as well as the ability for advanced users to define their own modules for custom analyses. Thus, we anticipate that steps will be of significant value to environment and wildlife managers and researchers from a broad range of disciplines.
  • Item
    Thumbnail Image
    Equilibrium Modeling for Environmental Science: Exploring the Nexus of Economic Systems and Environmental Change
    Cantele, M ; Bal, P ; Kompas, T ; Hadjikakou, M ; Wintle, B (AMER GEOPHYSICAL UNION, 2021-09)
    Abstract Equilibrium models (EMs) are frequently employed to examine the potential impacts of economic, energy, and trade policies as well as form the foundation of most integrated assessment models. Despite their central role coupling economic and environmental systems, environmental scientists are largely unfamiliar with the structure and methodology underpinning EMs, which serves as a barrier to interdisciplinary collaboration and model improvement. In this study we systematically extract data from 10 years of published EMs with a focus on how these models have been extended beyond their economic origins to encompass environmentally relevant sectors of interest. The results indicate that there is far greater spatial coverage of high income countries compared to low income countries, with notable gaps in Central America, Africa, the Middle East, and Central Asia. We also find a high degree of aggregation within production inputs and sectoral outputs, particularly within the context of global socioeconomic scenarios. For example, we were unable to identify a single temporally dynamic study that distinguished between products arising from managed versus natural forest, or pastures relative to natural grasslands. Due to the necessary breadth and associated knowledge gaps within a model of the entire global economy, we see considerable potential for cross‐disciplinary innovation as natural scientists gain familiarity into the role these models play in bridging the nexus between socioeconomic systems and environmental change.
  • Item
    Thumbnail Image
    Quantifying the impact of vegetation-based metrics on species persistence when choosing offsets for habitat destruction
    Marshall, E ; Valavi, R ; Connor, LO ; Cadenhead, N ; Southwell, D ; Wintle, BA ; Kujala, H (WILEY, 2021-04)
    Developers are often required by law to offset environmental impacts through targeted conservation actions. Most offset policies specify metrics for calculating offset requirements, usually by assessing vegetation condition. Despite widespread use, there is little evidence to support the effectiveness of vegetation-based metrics for ensuring biodiversity persistence. We compared long-term impacts of biodiversity offsetting based on area only; vegetation condition only; area × habitat suitability; and condition × habitat suitability in development and restoration simulations for the Hunter Region of New South Wales, Australia. We simulated development and subsequent offsetting through restoration within a virtual landscape, linking simulations to population viability models for 3 species. Habitat gains did not ensure species persistence. No net loss was achieved when performance of offsetting was assessed in terms of amount of habitat restored, but not when outcomes were assessed in terms of persistence. Maintenance of persistence occurred more often when impacts were avoided, giving further support to better enforce the avoidance stage of the mitigation hierarchy. When development affected areas of high habitat quality for species, persistence could not be guaranteed. Therefore, species must be more explicitly accounted for in offsets, rather than just vegetation or habitat alone. Declines due to a failure to account directly for species population dynamics and connectivity overshadowed the benefits delivered by producing large areas of high-quality habitat. Our modeling framework showed that the benefits delivered by offsets are species specific and that simple vegetation-based metrics can give misguided impressions on how well biodiversity offsets achieve no net loss.
  • Item
    Thumbnail Image
    Using decision science to evaluate global biodiversity indices
    Watermeyer, KE ; Bal, P ; Burgass, MJ ; Bland, LM ; Collen, B ; Hallam, C ; Kelly, LT ; McCarthy, MA ; Regan, TJ ; Stevenson, S ; Wintle, BA ; Nicholson, E ; Guillera-Arroita, G (WILEY, 2021-04)
    Global biodiversity indices are used to measure environmental change and progress toward conservation goals, yet few indices have been evaluated comprehensively for their capacity to detect trends of interest, such as declines in threatened species or ecosystem function. Using a structured approach based on decision science, we qualitatively evaluated 9 indices commonly used to track biodiversity at global and regional scales against 5 criteria relating to objectives, design, behavior, incorporation of uncertainty, and constraints (e.g., costs and data availability). Evaluation was based on reference literature for indices available at the time of assessment. We identified 4 key gaps in indices assessed: pathways to achieving goals (means objectives) were not always clear or relevant to desired outcomes (fundamental objectives); index testing and understanding of expected behavior was often lacking; uncertainty was seldom acknowledged or accounted for; and costs of implementation were seldom considered. These gaps may render indices inadequate in certain decision-making contexts and are problematic for indices linked with biodiversity targets and sustainability goals. Ensuring that index objectives are clear and their design is underpinned by a model of relevant processes are crucial in addressing the gaps identified by our assessment. Uptake and productive use of indices will be improved if index performance is tested rigorously and assumptions and uncertainties are clearly communicated to end users. This will increase index accuracy and value in tracking biodiversity change and supporting national and global policy decisions, such as the post-2020 global biodiversity framework of the Convention on Biological Diversity.
  • Item
    Thumbnail Image
    Factors influencing the residency of bettongs using one-way gates to exit a fenced reserve
    Moyses, J ; Hradsky, B ; Tuft, K ; Moseby, K ; Golding, N ; Wintle, B (Wiley, 2020-11)
    Understanding the conditions under which small native Australian mammals can persist in the presence of introduced predators remains a key challenge to conservation ecologists. Bettong‐specific one‐way gates were used at a predator‐free reserve in South Australia to allow the burrowing bettong (Bettongia lesueur) – a small potoroid, listed as ‘vulnerable’ nationally – to disperse out of the reserve. We conducted a field experiment to explore the conditions affecting residence time of bettongs that left the reserve. We monitored bettong and mammalian predator activity outside the fence using track surveys across 18 sites over two seasons. We examined the effect of supplementary feeding as a strategy for increasing residence time, as well as the influence of predator presence and habitat quality, using linear mixed models. Bettong activity was positively associated with supplementary feeding, midstorey vegetation cover and shelter availability. After gates were closed, bettong activity near gates declined to almost zero the following weeks, likely either due to death from predation or due to movement away from the sites. To a small extent, mammalian predators were more likely to be present at sites with high bettong activity. Further research on conditions to support persistence of burrowing bettongs and other small mammals, including understanding minimum necessary predator control effort, is required before successful establishment of populations outside of fences can occur.
  • Item
    Thumbnail Image
    Including indigenous knowledge in species distribution modeling for increased ecological insights
    Skroblin, A ; Carboon, T ; Bidu, G ; Chapman, N ; Miller, M ; Taylor, K ; Taylor, W ; Game, ET ; Wintle, BA (WILEY, 2021-04)
    Indigenous knowledge systems hold detailed information on current and past environments that can inform ecological understanding as well as contemporary environmental management. Despite its applicability, there are limited examples of indigenous knowledge being incorporated in species distribution models, which are widely used in the ecological sciences. In a collaborative manner, we designed a structured elicitation process and statistical framework to combine indigenous knowledge with survey data to model the distribution of a threatened and culturally significant species (greater bilby or mankarr [Macrotis lagotis]). We used Martu (Aboriginal people of the Australian western deserts) occurrence knowledge and presence data from track-based surveys to create predictive species distribution models with the Maxent program. Predictions of species distribution based on Martu knowledge were broader than those created with survey data. Together the Martu and survey models showed potential local declines, which were supported by Martu observation. Both data types were influenced by sampling bias that appeared to affect model predictions and performance. Martu provided additional information on habitat associations and locations of decline and descriptions of the ecosystem dynamics and disturbance regimes that influence occupancy. We concluded that intercultural approaches that draw on multiple sources of knowledge and information types may improve species distribution modeling and inform management of threatened or culturally significant species.
  • Item
    Thumbnail Image
    Measuring impacts on species with models and metrics of varying ecological and computational complexity
    Hallam, CD ; Wintle, BA ; Kujala, H ; Whitehead, AL ; Nicholson, E (WILEY, 2020-12-01)
    Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to comprehensive models that explicitly include ecological processes. The choice of metrics and models affects how impacts are interpreted and conservation decisions. We explored the impacts of 3 realistic disturbance scenarios on 4 species with different ecological and taxonomic traits. We used progressively more complex models and metrics to evaluate relative impact and rank of scenarios on the species. Models ranged from species distribution models that relied on implicit assumptions about environmental factors and species presence to highly parameterized spatially explicit population models that explicitly included ecological processes and stochasticity. Metrics performed consistently in ranking different scenarios in order of severity primarily when variation in impact was driven by habitat amount. However, they differed in rank for cases where dispersal dynamics were critical in influencing metapopulation persistence. Impacts of scenarios on species with low dispersal ability were better characterized using models that explicitly captured these processes. Metapopulation capacity provided rank orders that most consistently correlated with those from highly parameterized and data-rich models and incorporated information about dispersal with little additional computational and data cost. Our results highlight the importance of explicitly considering species' ecology, spatial configuration of habitat, and disturbance when choosing indicators of species persistence. We suggest using hybrid approaches that are a mixture of simple and complex models to improve multispecies assessments.
  • Item
    Thumbnail Image
    Assessing biophysical and socio-economic impacts of climate change on regional avian biodiversity
    Kapitza, S ; Van Ha, P ; Kompas, T ; Golding, N ; Cadenhead, NCR ; Bal, P ; Wintle, BA (NATURE PORTFOLIO, 2021-02-08)
    Climate change threatens biodiversity directly by influencing biophysical variables that drive species' geographic distributions and indirectly through socio-economic changes that influence land use patterns, driven by global consumption, production and climate. To date, no detailed analyses have been produced that assess the relative importance of, or interaction between, these direct and indirect climate change impacts on biodiversity at large scales. Here, we apply a new integrated modelling framework to quantify the relative influence of biophysical and socio-economically mediated impacts on avian species in Vietnam and Australia and we find that socio-economically mediated impacts on suitable ranges are largely outweighed by biophysical impacts. However, by translating economic futures and shocks into spatially explicit predictions of biodiversity change, we now have the power to analyse in a consistent way outcomes for nature and people of any change to policy, regulation, trading conditions or consumption trend at any scale from sub-national to global.
  • Item
    No Preview Available
    After the Megafires: What Next for Australian Wildlife?
    Wintle, BA ; Legge, S ; Woinarski, JCZ (ELSEVIER SCIENCE LONDON, 2020-09-01)
    The 2019–2020 megafires in Australia brought a tragic loss of human life and the most dramatic loss of habitat for threatened species and devastation of ecological communities in postcolonial history. What must be done now to keep impacted species from extinction? What can be done to avoid a repeat of the impacts of such devastating bushfires? Here, we describe hard-won lessons that may also be of global relevance