School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Effects of Ocean Warming on the Underexplored Members of the Coral Microbiome
    Maire, J ; Buerger, P ; Chan, WY ; Deore, P ; Dungan, AM ; Nitschke, MR ; van Oppen, MJH (OXFORD UNIV PRESS INC, 2022-12-30)
    The climate crisis is one of the most significant threats to marine ecosystems. It is leading to severe increases in sea surface temperatures and in the frequency and magnitude of marine heatwaves. These changing conditions are directly impacting coral reef ecosystems, which are among the most biodiverse ecosystems on Earth. Coral-associated symbionts are particularly affected because summer heatwaves cause coral bleaching-the loss of endosymbiotic microalgae (Symbiodiniaceae) from coral tissues, leading to coral starvation and death. Coral-associated Symbiodiniaceae and bacteria have been extensively studied in the context of climate change, especially in terms of community diversity and dynamics. However, data on other microorganisms and their response to climate change are scarce. Here, we review current knowledge on how increasing temperatures affect understudied coral-associated microorganisms such as archaea, fungi, viruses, and protists other than Symbiodiniaceae, as well as microbe-microbe interactions. We show that the coral-microbe symbiosis equilibrium is at risk under current and predicted future climate change and argue that coral reef conservation initiatives should include microbe-focused approaches.
  • Item
    Thumbnail Image
    Colonization and metabolite profiles of homologous, heterologous and experimentally evolved algal symbionts in the sea anemone Exaiptasia diaphana
    Ching, SJTM ; Chan, WY ; Perez-Gonzalez, A ; Hillyer, KE ; Buerger, P ; van Oppen, MJH (SPRINGERNATURE, 2022-03-30)
    The sea anemone, Exaiptasia diaphana, is a model of coral-dinoflagellate (Symbiodiniaceae) symbiosis. However, little is known of its potential to form symbiosis with Cladocopium-a key Indo-Pacific algal symbiont of scleractinian corals, nor the host nutritional consequences of such an association. Aposymbiotic anemones were inoculated with homologous algal symbionts, Breviolum minutum, and seven heterologous strains of Cladocopium C1acro (wild-type and heat-evolved) under ambient conditions. Despite lower initial algal cell density, Cladocopium C1acro-anemeones achieved similar cell densities as B. minutum-anemones by week 77. Wild-type and heat-evolved Cladocopium C1acro showed similar colonization patterns. Targeted LC-MS-based metabolomics revealed that almost all significantly different metabolites in the host and Symbiodiniaceae fractions were due to differences between Cladocopium C1acro and B. minutum, with little difference between heat-evolved and wild-type Cladocopium C1acro at week 9. The algal fraction of Cladocopium C1acro-anemones was enriched in metabolites related to nitrogen storage, while the host fraction of B. minutum-anemones was enriched in sugar-related metabolites. Compared to B. minutum, Cladocopium C1acro is likely slightly less nutritionally beneficial to the host under ambient conditions, but more capable of maintaining its own growth when host nitrogen supply is limited. Our findings demonstrate the value of E. diaphana to study experimentally evolved Cladocopium.
  • Item
    Thumbnail Image
    Evidence for de novo acquisition of microalgal symbionts by bleached adult corals
    Scharfenstein, HJ ; Chan, WY ; Buerger, P ; Humphrey, C ; van Oppen, MJH (SPRINGERNATURE, 2022-06)
    Early life stages of most coral species acquire microalgal endosymbionts (Symbiodiniaceae) from the environment, but whether exogenous symbiont uptake is possible in the adult life stage is unclear. Deep sequencing of the Symbiodiniaceae ITS2 genetic marker has revealed novel symbionts in adult corals following bleaching; however these strains may have already been present at densities below detection limits. To test whether acquisition of symbionts from the environment occurs, we subjected adult fragments of corals (six species in four families) to a chemical bleaching treatment (menthol and DCMU). The treatment reduced the native microalgal symbiont abundance to below 2% of their starting densities. The bleached corals were then inoculated with a cultured Cladocopium C1acro strain. Genotyping of the Symbiodiniaceae communities before bleaching and after reinoculation showed that fragments of all six coral species acquired the Cladocopium C1acro strain used for inoculation. Our results provide strong evidence for the uptake of Symbiodiniaceae from the environment by adult corals. We also demonstrate the feasibility of chemical bleaching followed by reinoculation to manipulate the Symbiodiniaceae communities of adult corals, providing an innovative approach to establish new symbioses between adult corals and heat-evolved microalgal symbionts, which could prove highly relevant to coral reef restoration efforts.
  • Item
    Thumbnail Image
    Adaptive responses of free-living and symbiotic microalgae to simulated future ocean conditions
    Chan, WY ; Oakeshott, JG ; Buerger, P ; Edwards, OR ; van Oppen, MJH (WILEY, 2021-05)
    Marine microalgae are a diverse group of microscopic eukaryotic and prokaryotic organisms capable of photosynthesis. They are important primary producers and carbon sinks but their physiology and persistence are severely affected by global climate change. Powerful experimental evolution technologies are being used to examine the potential of microalgae to respond adaptively to current and predicted future conditions, as well as to develop resources to facilitate species conservation and restoration of ecosystem functions. This review synthesizes findings and insights from experimental evolution studies of marine microalgae in response to elevated temperature and/or pCO2 . Adaptation to these environmental conditions has been observed in many studies of marine dinoflagellates, diatoms and coccolithophores. An enhancement in traits such as growth and photo-physiological performance and an increase in upper thermal limit have been shown to be possible, although the extent and rate of change differ between microalgal taxa. Studies employing multiple monoclonal replicates showed variation in responses among replicates and revealed the stochasticity of mutations. The work to date is already providing valuable information on species' climate sensitivity or resilience to managers and policymakers but extrapolating these insights to ecosystem- and community-level impacts continues to be a challenge. We recommend future work should include in situ experiments, diurnal and seasonal fluctuations, multiple drivers and multiple starting genotypes. Fitness trade-offs, stable versus plastic responses and the genetic bases of the changes also need investigating, and the incorporation of genome resequencing into experimental designs will be invaluable.
  • Item
    Thumbnail Image
    Maternal effects in gene expression of interspecific coral hybrids
    Chan, WY ; Chung, J ; Peplow, LM ; Hoffmann, AA ; van Oppen, MJH (Wiley, 2021-01)
    Maternal effects have been well documented for offspring morphology and life history traits in plants and terrestrial animals, yet little is known about maternal effects in corals. Further, few studies have explored maternal effects in gene expression. In a previous study, F1 interspecific hybrid and purebred larvae of the coral species Acropora tenuis and Acropora loripes were settled and exposed to ambient or elevated temperature and pCO2 conditions for 7 months. At this stage, the hybrid coral recruits from both ocean conditions exhibited strong maternal effects in several fitness traits. We conducted RNA‐sequencing on these corals and showed that gene expression of the hybrid Acropora also exhibited clear maternal effects. Only 40 genes were differentially expressed between hybrids and their maternal progenitor. In contrast, ~2000 differentially expressed genes were observed between hybrids and their paternal progenitors, and between the reciprocal F1 hybrids. These results indicate that maternal effects in coral gene expression can be long‐lasting. Unlike findings from most short‐term stress experiments in corals, no genes were differentially expressed in the hybrid nor purebred offspring after seven months of exposure to elevated temperature and pCO2 conditions.