School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    BASAL BODY REORIENTATION MEDIATED BY A CA-2+-MODULATED CONTRACTILE PROTEIN
    MCFADDEN, GI ; SCHULZE, D ; SUREK, B ; SALISBURY, JL ; MELKONIAN, M (ROCKEFELLER UNIV PRESS, 1987-08)
    A rapid, Ca2+-dependent change in the angle between basal bodies (up to 180 degrees) is associated with light-induced reversal of swimming direction (the "photophobic" response) in a number of flagellated green algae. In isolated, detergent-extracted, reactivated flagellar apparatus complexes of Spermatozopsis similis, axonemal beat form conversion to the symmetrical/undulating flagellar pattern and basal body reorientation (from the antiparallel to the parallel configuration) are simultaneously induced at greater than or equal to 10(-7) M Ca2+. Basal body reorientation, however, is independent of flagellar beating since it is induced at greater than or equal to 10(-7) M Ca2+ when flagellar beating is inhibited (i.e., in the presence of 1 microM orthovanadate in reactivation solutions; in the absence of ATP or dithiothreitol in isolation and reactivation solutions), or when axonemes are mechanically removed from flagellar apparatuses. Although frequent axonemal beat form reversals were induced by varying the Ca2+ concentration, antiparallel basal body configuration could not be restored in isolated flagellar apparatuses. Observations of the photophobic response in vivo indicate that even though the flagella resume the asymmetric, breaststroke beat form 1-2 s after photostimulation, antiparallel basal body configuration is not restored until a few minutes later. Using an antibody generated against the 20-kD Ca2+-modulated contractile protein of striated flagellar roots of Tetraselmis striata (Salisbury, J. L., A. Baron, B. Surek, and M. Melkonian, 1984, J. Cell Biol., 99:962-970), we have found the distal connecting fiber of Spermatozopsis similis to be immunoreactive by indirect immunofluorescence and immunogold electron microscopy. Electrophoretic and immunoblot analysis indicates that the antigen of S. similis flagellar apparatuses consists, like the Tetraselmis protein, of two acidic isoforms of 20 kD. We conclude that the distal basal body connecting fiber is a contractile organelle and reorients basal bodies during the photophobic response in certain flagellated green algae.
  • Item
    Thumbnail Image
    On the mechanism of anaphase A: evidence that ATP is needed for microtubule disassembly and not generation of polewards force.
    Spurck, TP ; Pickett-Heaps, JD (Rockefeller University Press, 1987-10)
    As anaphase began, mitotic PtK1 and newt lung epithelial cells were permeabilized with digitonin in permeabilization medium (PM). Permeabilization stopped cytoplasmic activity, chromosome movement, and cytokinesis within about 3 min, presumably due to the loss of endogenous ATP. ATP, GTP, or ATP-gamma-S added in the PM 4-7 min later restarted anaphase A while kinetochore fibers shortened. AMPPNP could not restart anaphase A; ATP was ineffective if the spindle was stabilized in PM + DMSO. Cells permeabilized in PM + taxol varied in their response to ATP depending on the stage of anaphase reached: one mid-anaphase cell showed initial movement of chromosomes back to the metaphase plate upon permeabilization but later, anaphase A resumed when ATP was added. Anaphase A was also reactivated by cold PM (approximately 16 degrees C) or PM containing calcium (1-10 mM). Staining of fixed cells with antitubulin showed that microtubules (MTs) were relatively stable after permeabilization and MT assembly was usually promoted in asters. Astral and kinetochore MTs were sensitive to MT disassembly conditions, and shortening of kinetochore MTs always accompanied reactivation of anaphase A. Interphase and interzonal spindle MTs were relatively stable to cold and calcium until extraction of cells was promoted by longer periods in the PM, or by higher concentrations of detergent. Since we cannot envisage how both cold treatment or relatively high calcium levels can reactivate spindle motility in quiescent, permeabilized, and presumably energy-depleted cells, we conclude that anaphase A is powered by energy stored in the spindle. The nucleotide triphosphates effective in reactivating anaphase A could be necessary for the kinetochore MT disassembly without which anaphase movement cannot proceed.