School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Evolution of pathogenicity and sexual reproduction in eight Candida genomes
    Butler, G ; Rasmussen, MD ; Lin, MF ; Santos, MAS ; Sakthikumar, S ; Munro, CA ; Rheinbay, E ; Grabherr, M ; Forche, A ; Reedy, JL ; Agrafioti, I ; Arnaud, MB ; Bates, S ; Brown, AJP ; Brunke, S ; Costanzo, MC ; Fitzpatrick, DA ; de Groot, PWJ ; Harris, D ; Hoyer, LL ; Hube, B ; Klis, FM ; Kodira, C ; Lennard, N ; Logue, ME ; Martin, R ; Neiman, AM ; Nikolaou, E ; Quail, MA ; Quinn, J ; Santos, MC ; Schmitzberger, FF ; Sherlock, G ; Shah, P ; Silverstein, KAT ; Skrzypek, MS ; Soll, D ; Staggs, R ; Stansfield, I ; Stumpf, MPH ; Sudbery, PE ; Srikantha, T ; Zeng, Q ; Berman, J ; Berriman, M ; Heitman, J ; Gow, NAR ; Lorenz, MC ; Birren, BW ; Kellis, M ; Cuomo, CA (NATURE PUBLISHING GROUP, 2009-06-04)
    Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.
  • Item
    No Preview Available
    Evolving proteins at Darwin's bicentenary.
    Pinney, JW ; Stumpf, MPH (Springer Science and Business Media LLC, 2009)
    A report of the Biochemical Society/Wellcome Trust meeting 'Protein Evolution - Sequences, Structures and Systems', Hinxton, UK, 26-27 January 2009.
  • Item
    Thumbnail Image
    Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data
    Kirk, PDW ; Stumpf, MPH (OXFORD UNIV PRESS, 2009-05-15)
    MOTIVATION: Although widely accepted that high-throughput biological data are typically highly noisy, the effects that this uncertainty has upon the conclusions we draw from these data are often overlooked. However, in order to assign any degree of confidence to our conclusions, we must quantify these effects. Bootstrap resampling is one method by which this may be achieved. Here, we present a parametric bootstrapping approach for time-course data, in which Gaussian process regression (GPR) is used to fit a probabilistic model from which replicates may then be drawn. This approach implicitly allows the time dependence of the data to be taken into account, and is applicable to a wide range of problems. RESULTS: We apply GPR bootstrapping to two datasets from the literature. In the first example, we show how the approach may be used to investigate the effects of data uncertainty upon the estimation of parameters in an ordinary differential equations (ODE) model of a cell signalling pathway. Although we find that the parameter estimates inferred from the original dataset are relatively robust to data uncertainty, we also identify a distinct second set of estimates. In the second example, we use our method to show that the topology of networks constructed from time-course gene expression data appears to be sensitive to data uncertainty, although there may be individual edges in the network that are robust in light of present data. AVAILABILITY: Matlab code for performing GPR bootstrapping is available from our web site: http://www3.imperial.ac.uk/theoreticalsystemsbiology/data-software/.
  • Item
    Thumbnail Image
    Phylogenetic diversity of stress signalling pathways in fungi
    Nikolaou, E ; Agrafioti, I ; Stumpf, M ; Quinn, J ; Stansfield, I ; Brown, AJP (BIOMED CENTRAL LTD, 2009-02-21)
    BACKGROUND: Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts. RESULTS: The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol), oxidative (H2O2 and menadione) and cell wall stresses (Calcofluor White and Congo Red). There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress. CONCLUSION: Our data are consistent with the hypothesis that fungal stress signalling components have undergone rapid recent evolution to tune the stress responses in a niche-specific fashion.