School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    Cation leak: a common functional defect causing HCN1 developmental and epileptic encephalopathy
    McKenzie, CE ; Forster, IC ; Soh, MS ; Phillips, AM ; Bleakley, LE ; Russ-Hall, SJ ; Myers, KA ; Scheffer, IE ; Reid, CA (OXFORD UNIV PRESS, 2023-05-02)
    Pathogenic variants in HCN1 are an established cause of developmental and epileptic encephalopathy (DEE). To date, the stratification of patients with HCN1-DEE based on the biophysical consequence on channel function of a given variant has not been possible. Here, we analysed data from eleven patients carrying seven different de novo HCN1 pathogenic variants located in the transmembrane domains of the protein. All patients were diagnosed with severe disease including epilepsy and intellectual disability. The functional properties of the seven HCN1 pathogenic variants were assessed using two-electrode voltage-clamp recordings in Xenopus oocytes. All seven variants showed a significantly larger instantaneous current consistent with cation leak. The impact of each variant on other biophysical properties was variable, including changes in the half activation voltage and activation and deactivation kinetics. These data suggest that cation leak is an important pathogenic mechanism in HCN1-DEE. Furthermore, published mouse model and clinical case reports suggest that seizures are exacerbated by sodium channel blockers in patients with HCN1 variants that cause cation leak. Stratification of patients based on their 'cation leak' biophysical phenotype may therefore provide key information to guide clinical management of individuals with HCN1-DEE.
  • Item
    Thumbnail Image
    Impaired Color Recognition in HCN1 Epilepsy: A Single Case Report
    Mckenzie, CE ; Ho, C-J ; Forster, IC ; Soh, MS ; Phillips, AM ; Chang, Y-C ; Scheffer, IE ; Reid, CA ; Tsai, M-H (FRONTIERS MEDIA SA, 2022-03-10)
    Variants in HCN1 are associated with a range of epilepsy syndromes including developmental and epileptic encephalopathies. Here we describe a child harboring a novel de novo HCN1 variant, E246A, in a child with epilepsy and mild developmental delay. By parental report, the child had difficulty in discriminating between colors implicating a visual deficit. This interesting observation may relate to the high expression of HCN1 channels in rod and cone photoreceptors where they play an integral role in shaping the light response. Functional analysis of the HCN1 E246A variant revealed a right shift in the voltage dependence of activation and slowing of the rates of activation and deactivation. The changes in the biophysical properties are consistent with a gain-of-function supporting the role of HCN1 E246A in disease causation. This case suggests that visual function, including color discrimination, should be carefully monitored in patients with diseases due to HCN1 pathogenic variants.
  • Item
    Thumbnail Image
    Gain-of-function HCN2 variants in genetic epilepsy
    Li, M ; Maljevic, S ; Phillips, AM ; Petrovski, S ; Hildebrand, MS ; Burgess, R ; Mount, T ; Zara, F ; Striano, P ; Schubert, J ; Thiele, H ; Nuernberg, P ; Wong, M ; Weisenberg, JL ; Thio, LL ; Lerche, H ; Scheffer, IE ; Berkovic, SF ; Petrou, S ; Reid, CA (WILEY, 2018-02)
    Genetic generalized epilepsy (GGE) is a common epilepsy syndrome that encompasses seizure disorders characterized by spike-and-wave discharges (SWDs). Pacemaker hyperpolarization-activated cyclic nucleotide-gated channels (HCN) are considered integral to SWD genesis, making them an ideal gene candidate for GGE. We identified HCN2 missense variants from a large cohort of 585 GGE patients, recruited by the Epilepsy Phenome-Genome Project (EPGP), and performed functional analysis using two-electrode voltage clamp recordings from Xenopus oocytes. The p.S632W variant was identified in a patient with idiopathic photosensitive occipital epilepsy and segregated in the family. This variant was also independently identified in an unrelated patient with childhood absence seizures from a European cohort of 238 familial GGE cases. The p.V246M variant was identified in a patient with photo-sensitive GGE and his father diagnosed with juvenile myoclonic epilepsy. Functional studies revealed that both p.S632W and p.V246M had an identical functional impact including a depolarizing shift in the voltage dependence of activation that is consistent with a gain-of-function. In contrast, no biophysical changes resulted from the introduction of common population variants, p.E280K and p.A705T, and the p.R756C variant from EPGP that did not segregate with disease. Our data suggest that HCN2 variants can confer susceptibility to GGE via a gain-of-function mechanism.
  • Item
    Thumbnail Image
    The hyperpolarization-activated cyclic nucleotide-gated 4 channel as a potential anti-seizure drug target
    Kharouf, Q ; Phillips, AM ; Bleakley, LE ; Morrisroe, E ; Oyrer, J ; Jia, L ; Ludwig, A ; Jin, L ; Nicolazzo, JA ; Cerbai, E ; Romanelli, MN ; Petrou, S ; Reid, CA (Wiley, 2020-08-01)
    Background and Purpose Hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels are encoded by four genes (HCN1–4) with distinct biophysical properties and functions within the brain. HCN4 channels activate slowly at robust hyperpolarizing potentials, making them more likely to be engaged during hyperexcitable neuronal network activity seen during seizures. HCN4 channels are also highly expressed in thalamic nuclei, a brain region implicated in seizure generalization. Here, we assessed the utility of targeting the HCN4 channel as an anti‐seizure strategy using pharmacological and genetic approaches. Experimental Approach The impact of reducing HCN4 channel function on seizure susceptibility and neuronal network excitability was studied using an HCN4 channel preferring blocker (EC18) and a conditional brain specific HCN4 knockout mouse model. Key Results EC18 (10 mg·kg−1) and brain‐specific HCN4 channel knockout reduced seizure susceptibility and proconvulsant‐mediated cortical spiking recorded using electrocorticography, with minimal effects on other mouse behaviours. EC18 (10 μM) decreased neuronal network bursting in mouse cortical cultures. Importantly, EC18 was not protective against proconvulsant‐mediated seizures in the conditional HCN4 channel knockout mouse and did not reduce bursting behaviour in AAV‐HCN4 shRNA infected mouse cortical cultures. Conclusions and Implications These data suggest the HCN4 channel as a potential pharmacologically relevant target for anti‐seizure drugs that is likely to have a low side‐effect liability in the CNS.
  • Item
    Thumbnail Image
    Gabapentin Modulates HCN4 Channel Voltage-Dependence
    Tae, H-S ; Smith, KM ; Phillips, AM ; Boyle, KA ; Li, M ; Forster, IC ; Hatch, RJ ; Richardson, R ; Hughes, DI ; Graham, BA ; Petrou, S ; Reid, CA (FRONTIERS MEDIA SA, 2017-08-21)
    Gabapentin (GBP) is widely used to treat epilepsy and neuropathic pain. There is evidence that GBP can act on hyperpolarization-activated cation (HCN) channel-mediated Ih in brain slice experiments. However, evidence showing that GBP directly modulates HCN channels is lacking. The effect of GBP was tested using two-electrode voltage clamp recordings from human HCN1, HCN2, and HCN4 channels expressed in Xenopus oocytes. Whole-cell recordings were also made from mouse spinal cord slices targeting either parvalbumin positive (PV+) or calretinin positive (CR+) inhibitory neurons. The effect of GBP on Ih was measured in each inhibitory neuron population. HCN4 expression was assessed in the spinal cord using immunohistochemistry. When applied to HCN4 channels, GBP (100 μM) caused a hyperpolarizing shift in the voltage of half activation (V1/2) thereby reducing the currents. Gabapentin had no impact on the V1/2 of HCN1 or HCN2 channels. There was a robust increase in the time to half activation for HCN4 channels with only a small increase noted for HCN1 channels. Gabapentin also caused a hyperpolarizing shift in the V1/2 of Ih measured from HCN4-expressing PV+ inhibitory neurons in the spinal dorsal horn. Gabapentin had minimal effect on Ih recorded from CR+ neurons. Consistent with this, immunohistochemical analysis revealed that the majority of CR+ inhibitory neurons do not express somatic HCN4 channels. In conclusion, GBP reduces HCN4 channel-mediated currents through a hyperpolarized shift in the V1/2. The HCN channel subtype selectivity of GBP provides a unique tool for investigating HCN4 channel function in the central nervous system. The HCN4 channel is a candidate molecular target for the acute analgesic and anticonvulsant actions of GBP.
  • Item
    Thumbnail Image
    Functional variants in HCN4 and CACNA1H may contribute to genetic generalized epilepsy.
    Becker, F ; Reid, CA ; Hallmann, K ; Tae, H-S ; Phillips, AM ; Teodorescu, G ; Weber, YG ; Kleefuss-Lie, A ; Elger, C ; Perez-Reyes, E ; Petrou, S ; Kunz, WS ; Lerche, H ; Maljevic, S (Wiley, 2017-09)
    OBJECTIVE: Genetic generalized epilepsy (GGE) encompasses seizure disorders characterized by spike-and-wave discharges (SWD) originating within thalamo-cortical circuits. Hyperpolarization-activated (HCN) and T-type Ca2+ channels are key modulators of rhythmic activity in these brain regions. Here, we screened HCN4 and CACNA1H genes for potentially contributory variants and provide their functional analysis. METHODS: Targeted gene sequencing was performed in 20 unrelated familial cases with different subtypes of GGE, and the results confirmed in 230 ethnically matching controls. Selected variants in CACNA1H and HCN4 were functionally assessed in tsA201 cells and Xenopus laevis oocytes, respectively. RESULTS: We discovered a novel CACNA1H (p.G1158S) variant in two affected members of a single family. One of them also carried an HCN4 (p.P1117L) variant inherited from the unaffected mother. In a separate family, an HCN4 variant (p.E153G) was identified in one of several affected members. Voltage-clamp analysis of CACNA1H (p.G1158S) revealed a small but significant gain-of-function, including increased current density and a depolarizing shift of steady-state inactivation. HCN4 p.P1117L and p.G153E both caused a hyperpolarizing shift in activation and reduced current amplitudes, resulting in a loss-of-function. SIGNIFICANCE: Our results are consistent with a model suggesting cumulative contributions of subtle functional variations in ion channels to seizure susceptibility and GGE.
  • Item
    Thumbnail Image
    Development of a rapid functional assay that predicts GLUT1 disease severity
    Zaman, SM ; Mullen, SA ; Petrovski, S ; Maljevic, S ; Gazina, E ; Phillips, AM ; Jones, GD ; Hildebrand, MS ; Damiano, J ; Auvin, S ; Lerche, H ; Weber, YG ; Berkovic, SF ; Scheffer, IE ; Reid, CA ; Petrou, S (LIPPINCOTT WILLIAMS & WILKINS, 2018-12)
    OBJECTIVE: To examine the genotype to phenotype connection in glucose transporter type 1 (GLUT1) deficiency and whether a simple functional assay can predict disease outcome from genetic sequence alone. METHODS: GLUT1 deficiency, due to mutations in SLC2A1, causes a wide range of epilepsies. One possible mechanism for this is variable impact of mutations on GLUT1 function. To test this, we measured glucose transport by GLUT1 variants identified in population controls and patients with mild to severe epilepsies. Controls were reference sequence from the NCBI and 4 population missense variants chosen from public reference control databases. Nine variants associated with epilepsies or movement disorders, with normal intellect in all individuals, formed the mild group. The severe group included 5 missense variants associated with classical GLUT1 encephalopathy. GLUT1 variants were expressed in Xenopus laevis oocytes, and glucose uptake was measured to determine kinetics (Vmax) and affinity (Km). RESULTS: Disease severity inversely correlated with rate of glucose transport between control (Vmax = 28 ± 5), mild (Vmax = 16 ± 3), and severe (Vmax = 3 ± 1) groups, respectively. Affinities of glucose binding in control (Km = 55 ± 18) and mild (Km = 43 ± 10) groups were not significantly different, whereas affinity was indeterminate in the severe group because of low transport rates. Simplified analysis of glucose transport at high concentration (100 mM) was equally effective at separating the groups. CONCLUSIONS: Disease severity can be partly explained by the extent of GLUT1 dysfunction. This simple Xenopus oocyte assay complements genetic and clinical assessments. In prenatal diagnosis, this simple oocyte glucose uptake assay could be useful because standard clinical assessments are not available.
  • Item
    Thumbnail Image
    Using a Multiplex Nucleic Acid in situ Hybridization Technique to Determine HCN4 mRNA Expression in the Adult Rodent Brain
    Oyrer, J ; Bleakley, LE ; Richards, KL ; Maljevic, S ; Phillips, AM ; Petrou, S ; Nowell, CJ ; Reid, CA (FRONTIERS MEDIA SA, 2019-08-28)
    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels carry a non-selective cationic conductance, I h , which is important for modulating neuron excitability. Four genes (HCN1-4) encode HCN channels, with each gene having distinct expression and biophysical profiles. Here we use multiplex nucleic acid in situ hybridization to determine HCN4 mRNA expression within the adult mouse brain. We take advantage of this approach to detect HCN4 mRNA simultaneously with either HCN1 or HCN2 mRNA and markers of excitatory (VGlut-positive) and inhibitory (VGat-positive) neurons, which was not previously reported. We have developed a Fiji-based analysis code that enables quantification of mRNA expression within identified cell bodies. The highest HCN4 mRNA expression was found in the habenula (medial and lateral) and the thalamus. HCN4 mRNA was particularly high in the medial habenula with essentially no co-expression of HCN1 or HCN2 mRNA. An absence of I h -mediated "sag" in neurons recorded from the medial habenula of knockout mice confirmed that HCN4 channels are the predominant subtype in this region. Analysis in the thalamus revealed HCN4 mRNA in VGlut2-positive excitatory neurons that was always co-expressed with HCN2 mRNA. In contrast, HCN4 mRNA was undetectable in the nucleus reticularis. HCN4 mRNA expression was high in a subset of VGat-positive cells in the globus pallidus external. The majority of these neurons co-expressed HCN2 mRNA while a smaller subset also co-expressed HCN1 mRNA. In the striatum, a small subset of large cells which are likely to be giant cholinergic interneurons co-expressed high levels of HCN4 and HCN2 mRNA. The amygdala, cortex and hippocampus expressed low levels of HCN4 mRNA. This study highlights the heterogeneity of HCN4 mRNA expression in the brain and provides a morphological framework on which to better investigate the functional roles of HCN4 channels.
  • Item
    No Preview Available
  • Item
    No Preview Available