School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of 13C metabolomics
    Hillyer, KE ; Dias, DA ; Lutz, A ; Roessner, U ; Davy, SK (WILEY, 2017-06)
    Coral bleaching is a major threat to the persistence of coral reefs. Yet we lack detailed knowledge of the metabolic interactions that determine symbiosis function and bleaching-induced change. We mapped autotrophic carbon fate within the free metabolite pools of both partners of a model cnidarian-dinoflagellate symbiosis (Aiptasia-Symbiodinium) during exposure to thermal stress via the stable isotope tracer (13 C bicarbonate), coupled to GC-MS. Symbiont photodamage and pronounced bleaching coincided with substantial increases in the turnover of non13 C-labelled pools in the dinoflagellate (lipid and starch store catabolism). However, 13 C enrichment of multiple compounds associated with ongoing carbon fixation and de novo biosynthesis pathways was maintained (glucose, fatty acid and lipogenesis intermediates). Minimal change was also observed in host pools of 13 C-enriched glucose (a major symbiont-derived mobile product). However, host pathways downstream showed altered carbon fate and/or pool composition, with accumulation of compatible solutes and nonenzymic antioxidant precursors. In hospite symbionts continue to provide mobile products to the host, but at a significant cost to themselves, necessitating the mobilization of energy stores. These data highlight the need to further elucidate the role of metabolic interactions between symbiotic partners, during the process of thermal acclimation and coral bleaching.
  • Item
    Thumbnail Image
    Genetic markers for antioxidant capacity in a reef-building coral
    Jin, YK ; Lundgren, P ; Lutz, A ; Raina, J-B ; Howells, EJ ; Paley, AS ; Willis, BL ; van Oppen, MJH (AMER ASSOC ADVANCEMENT SCIENCE, 2016-05)
    The current lack of understanding of the genetic basis underlying environmental stress tolerance in reef-building corals impairs the development of new management approaches to confronting the global demise of coral reefs. On the Great Barrier Reef (GBR), an approximately 51% decline in coral cover occurred over the period 1985-2012. We conducted a gene-by-environment association analysis across 12° latitude on the GBR, as well as both in situ and laboratory genotype-by-phenotype association analyses. These analyses allowed us to identify alleles at two genetic loci that account for differences in environmental stress tolerance and antioxidant capacity in the common coral Acropora millepora. The effect size for antioxidant capacity was considerable and biologically relevant (32.5 and 14.6% for the two loci). Antioxidant capacity is a critical component of stress tolerance because a multitude of environmental stressors cause increased cellular levels of reactive oxygen species. Our findings provide the first step toward the development of novel coral reef management approaches, such as spatial mapping of stress tolerance for use in marine protected area design, identification of stress-tolerant colonies for assisted migration, and marker-assisted selective breeding to create more tolerant genotypes for restoration of denuded reefs.
  • Item
    Thumbnail Image
    A Quantitative Profiling Method of Phytohormones and Other Metabolites Applied to Barley Roots Subjected to Salinity Stress
    Cao, D ; Lutz, A ; Hill, CB ; Callahan, DL ; Roessner, U (Frontiers Media, 2017-01-10)
    As integral parts of plant signaling networks, phytohormones are involved in the regulation of plant metabolism and growth under adverse environmental conditions, including salinity. Globally, salinity is one of the most severe abiotic stressors with an estimated 800 million hectares of arable land affected. Roots are the first plant organ to sense salinity in the soil, and are the initial site of sodium (Na+) exposure. However, the quantification of phytohormones in roots is challenging, as they are often present at extremely low levels compared to other plant tissues. To overcome this challenge, we developed a high-throughput LC-MS method to quantify ten endogenous phytohormones and their metabolites of diverse chemical classes in roots of barley. This method was validated in a salinity stress experiment with six barley varieties grown hydroponically with and without salinity. In addition to phytohormones, we quantified 52 polar primary metabolites, including some phytohormone precursors, using established GC-MS and LC-MS methods. Phytohormone and metabolite data were correlated with physiological measurements including biomass, plant size and chlorophyll content. Root and leaf elemental analysis was performed to determine Na+ exclusion and K+ retention ability in the studied barley varieties. We identified distinct phytohormone and metabolite signatures as a response to salinity stress in different barley varieties. Abscisic acid increased in the roots of all varieties under salinity stress, and elevated root salicylic acid levels were associated with an increase in leaf chlorophyll content. Furthermore, the landrace Sahara maintained better growth, had lower Na+ levels and maintained high levels of the salinity stress linked metabolite putrescine as well as the phytohormone metabolite cinnamic acid, which has been shown to increase putrescine concentrations in previous studies. This study highlights the importance of root phytohormones under salinity stress and the multi-variety analysis provides an important update to analytical methodology, and adds to the current knowledge of salinity stress responses in plants at the molecular level.
  • Item
    Thumbnail Image
    Diurnal Changes in Transcript and Metabolite Levels during the Iron Deficiency Response of Rice
    Selby-Pham, J ; Lutz, A ; Moreno-Moyano, LT ; Boughton, BA ; Roessner, U ; Johnson, AAT (SpringerOpen, 2017-04-20)
    Background Rice (Oryza sativa L.) is highly susceptible to iron (Fe) deficiency due to low secretion levels of the mugineic acid (MA) family phytosiderophore (PS) 2′-deoxymugineic acid (DMA) into the rhizosphere. The low levels of DMA secreted by rice have proved challenging to measure and, therefore, the pattern of DMA secretion under Fe deficiency has been less extensively studied relative to other graminaceous monocot species that secrete high levels of PS, such as barley (Hordeum vulgare L.). Results Gene expression and metabolite analyses were used to characterise diurnal changes occurring during the Fe deficiency response of rice. Iron deficiency inducible genes involved in root DMA biosynthesis and secretion followed a diurnal pattern with peak induction occurring 3–5 h after the onset of light; a result consistent with that of other Strategy II plant species such as barley and wheat. Furthermore, triple quadrupole mass spectrometry identified 3–5 h after the onset of light as peak time of DMA secretion from Fe-deficient rice roots. Metabolite profiling identified accumulation of amines associated with metal chelation, metal translocation and plant oxidative stress responses occurring with peak induction 10–12 h after the onset of light. Conclusion The results of this study confirmed that rice shares a similar peak time of Fe deficiency associated induction of DMA secretion compared to other Strategy II plant species but has less prominent daily fluctuations of DMA secretion. It also revealed metabolic changes associated with the remediation of Fe deficiency and mitigation of damage from resulting stress in rice roots. This study complements previous studies on the genetic changes in response to Fe deficiency in rice and constitutes an important advance towards our understanding of the molecular mechanisms underlying the rice Fe deficiency response.
  • Item
    Thumbnail Image
    Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora
    Lutz, A ; Raina, J-B ; Motti, CA ; Miller, DJ ; van Oppen, MJH ; Medina, M (PUBLIC LIBRARY SCIENCE, 2015-10-01)
    Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities). The results show that the responses of the two antioxidant systems occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii) by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction.