School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Shifting paradigms in restoration of the world's coral reefs
    Van Oppen, MJH ; Gates, RD ; Blackall, LL ; Cantin, N ; Chakravarti, LJ ; Chan, WY ; Cormick, C ; Crean, A ; Damjanovic, K ; Epstein, H ; Harrison, PL ; Jones, TA ; Miller, M ; Pears, RJ ; Peplow, LM ; Raftos, DA ; Schaffelke, B ; Stewart, K ; Torda, G ; Wachenfeld, D ; Weeks, AR ; Putnam, HM (Wiley, 2017-09-01)
    Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine‐protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014–2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs.
  • Item
    Thumbnail Image
    Interspecific gamete compatibility and hybrid larval fitness in reef-building corals: Implications for coral reef restoration
    Chan, WY ; Peplow, LM ; van Oppen, MJH (NATURE PORTFOLIO, 2019-03-18)
    Climate warming is a major cause of the global decline of coral reefs. Active reef restoration, although still in its infancy, is one of several possible ways to help restore coral cover and reef ecosystem function. The deployment of mature coral larvae onto depauperate reef substratum has been shown to significantly increase larval recruitment, providing a novel option for the delivery of ex situ bred coral stock to the reef for restoration purposes. The success of such reef restoration approaches may be improved by the use of coral larval stock augmented for climate resilience. Here we explore whether coral climate resilience can be enhanced via interspecific hybridization through hybrid vigour. Firstly, we assessed cross-fertility of four pairs of Acropora species from the Great Barrier Reef. Temporal isolation in gamete release between the Acropora species was limited, but gametic incompatibility was present with varying strength between species pairs and depending on the direction of the hybrid crosses. We subsequently examined the fitness of hybrid and purebred larvae under heat stress by comparing their survival and settlement success throughout 10 days of exposure to 28 °C, 29.5 °C and 31 °C. Fitness of the majority of Acropora hybrid larvae was similar to that of the purebred larvae of both parental species, and in some instances it was higher than that of the purebred larvae of one of the parental species. Lower hybrid fertilization success did not affect larval fitness. These findings indicate that high hybrid fitness can be achieved after overcoming partial prezygotic barriers, and that interspecific hybridization may be a tool to enhance coral recruitment and climate resilience.
  • Item
    Thumbnail Image
    The roles of age, parentage and environment on bacterial and algal endosymbiont communities in Acropora corals
    Chan, WY ; Peplow, LM ; Menendez, P ; Hoffmann, AA ; van Oppen, MJH (WILEY, 2019-08)
    The bacterial and microalgal endosymbiont (Symbiodiniaceae spp.) communities associated with corals have important roles in their health and resilience, yet little is known about the factors driving their succession during early coral life stages. Using 16S rRNA gene and ITS2 metabarcoding, we compared these communities in four Acropora coral species and their hybrids obtained from two laboratory crosses (Acropora tenuis × Acropora loripes and Acropora sarmentosa × Acropora florida) across the parental, recruit (7 months old) and juvenile (2 years old) life stages. We tested whether microbiomes differed between (a) life stages, (b) hybrids and purebreds, and (c) treatment conditions (ambient/elevated temperature and pCO2 ). Microbial communities of early life stage corals were highly diverse, lacked host specificity and were primarily determined by treatment conditions. Over time, a winnowing process occurred, and distinct microbial communities developed between the two species pair crosses by 2 years of age, irrespective of hybrid or purebred status. These findings suggest that the microbial communities of corals have a period of flexibility prior to adulthood, which can be valuable to future research aimed at the manipulation of coral microbial communities.