School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Unbiased population heterozygosity estimates from genome-wide sequence data
    Schmidt, TL ; Jasper, M-E ; Weeks, AR ; Hoffmann, AA (WILEY, 2021-10)
    Abstract Heterozygosity is a metric of genetic variability frequently used to inform the management of threatened taxa. Estimating observed and expected heterozygosities from genome‐wide sequence data has become increasingly common, and these estimates are often derived directly from genotypes at single nucleotide polymorphism (SNP) markers. While many SNP markers can provide precise estimates of genetic processes, the results of ‘downstream’ analysis with these markers may depend heavily on ‘upstream’ filtering decisions. Here we explore the downstream consequences of sample size, rare allele filtering, missing data thresholds and known population structure on estimates of observed and expected heterozygosity using two reduced‐representation sequencing datasets, one from the mosquito Aedes aegypti (ddRADseq) and the other from a threatened grasshopper, Keyacris scurra (DArTseq). We show that estimates based on polymorphic markers only (i.e. SNP heterozygosity) are always biased by global sample size (N), with smaller N producing larger estimates. By contrast, results are unbiased by sample size when calculations consider monomorphic as well as polymorphic sequence information (i.e. genome‐wide or autosomal heterozygosity). SNP heterozygosity is also biased when differentiated populations are analysed together while autosomal heterozygosity remains unbiased. We also show that when nucleotide sites with missing genotypes are included, observed and expected heterozygosity estimates diverge in proportion to the amount of missing data permitted at each site. We make three recommendations for estimating genome‐wide heterozygosity: (a) autosomal heterozygosity should be reported instead of (or in addition to) SNP heterozygosity; (b) sites with any missing data should be omitted and (c) populations should be analysed in independent runs. This should facilitate comparisons within and across studies and between observed and expected measures of heterozygosity.
  • Item
    Thumbnail Image
    Spatial population genomics of a recent mosquito invasion
    Schmidt, TL ; Swan, T ; Chung, J ; Karl, S ; Demok, S ; Yang, Q ; Field, MA ; Muzari, MO ; Ehlers, G ; Brugh, M ; Bellwood, R ; Horne, P ; Burkot, TR ; Ritchie, S ; Hoffmann, AA (WILEY, 2021-03)
    Population genomic approaches can characterize dispersal across a single generation through to many generations in the past, bridging the gap between individual movement and intergenerational gene flow. These approaches are particularly useful when investigating dispersal in recently altered systems, where they provide a way of inferring long-distance dispersal between newly established populations and their interactions with existing populations. Human-mediated biological invasions represent such altered systems which can be investigated with appropriate study designs and analyses. Here we apply temporally restricted sampling and a range of population genomic approaches to investigate dispersal in a 2004 invasion of Aedes albopictus (the Asian tiger mosquito) in the Torres Strait Islands (TSI) of Australia. We sampled mosquitoes from 13 TSI villages simultaneously and genotyped 373 mosquitoes at genome-wide single nucleotide polymorphisms (SNPs): 331 from the TSI, 36 from Papua New Guinea (PNG) and four incursive mosquitoes detected in uninvaded regions. Within villages, spatial genetic structure varied substantially but overall displayed isolation by distance and a neighbourhood size of 232-577. Close kin dyads revealed recent movement between islands 31-203 km apart, and deep learning inferences showed incursive Ae. albopictus had travelled to uninvaded regions from both adjacent and nonadjacent islands. Private alleles and a co-ancestry matrix indicated direct gene flow from PNG into nearby islands. Outlier analyses also detected four linked alleles introgressed from PNG, with the alleles surrounding 12 resistance-associated cytochrome P450 genes. By treating dispersal as both an intergenerational process and a set of discrete events, we describe a highly interconnected invasive system.
  • Item
    Thumbnail Image
    Genetic stability of Aedes aegypti populations following invasion by wMel Wolbachia
    Lau, M-J ; Schmidt, TL ; Yang, Q ; Chung, J ; Sankey, L ; Ross, PA ; Hoffmann, AA (BMC, 2021-12-14)
    BACKGROUND: Wolbachia wMel is the most commonly used strain in rear and release strategies for Aedes aegypti mosquitoes that aim to inhibit the transmission of arboviruses such as dengue, Zika, Chikungunya and yellow fever. However, the long-term establishment of wMel in natural Ae. aegypti populations raises concerns that interactions between Wolbachia wMel and Ae. aegypti may lead to changes in the host genome, which could affect useful attributes of Wolbachia that allow it to invade and suppress disease transmission. RESULTS: We applied an evolve-and-resequence approach to study genome-wide genetic changes in Ae. aegypti from the Cairns region, Australia, where Wolbachia wMel was first introduced more than 10 years ago. Mosquito samples were collected at three different time points in Gordonvale, Australia, covering the phase before (2010) and after (2013 and 2018) Wolbachia releases. An additional three locations where Wolbachia replacement happened at different times across the last decade were also sampled in 2018. We found that the genomes of mosquito populations mostly remained stable after Wolbachia release, with population differences tending to reflect the geographic location of the populations rather than Wolbachia infection status. However, outlier analysis suggests that Wolbachia may have had an influence on some genes related to immune response, development, recognition and behavior. CONCLUSIONS: Ae. aegypti populations remained geographically distinct after Wolbachia wMel releases in North Australia despite their Wolbachia infection status. At some specific genomic loci, we found signs of selection associated with Wolbachia, suggesting potential evolutionary impacts can happen in the future and further monitoring is warranted.
  • Item
    Thumbnail Image
    Migration trajectories of the diamondback moth Plutella xylostella in China inferred from population genomic variation
    Chen, M-Z ; Cao, L-J ; Li, B-Y ; Chen, J-C ; Gong, Y-J ; Yang, Q ; Schmidt, TL ; Yue, L ; Zhu, J-Y ; Li, H ; Chen, X-X ; Hoffmann, AA ; Wei, S-J (JOHN WILEY & SONS LTD, 2021-04)
  • Item
    Thumbnail Image
    Incursion pathways of theAsiantiger mosquito (Aedes albopictus) intoAustraliacontrast sharply with those of the yellow fever mosquito (Aedes aegypti)
    Schmidt, TL ; Chung, J ; van Rooyen, AR ; Sly, A ; Weeks, AR ; Hoffmann, AA (JOHN WILEY & SONS LTD, 2020-12)
  • Item
    Thumbnail Image
    Heterogeneous genetic invasions of three insecticide resistance mutations in Indo-Pacific populations of Aedes aegypti (L.)
    Endersby-Harshman, NM ; Schmidt, TL ; Chung, J ; van Rooyen, A ; Weeks, AR ; Hoffmann, AA (WILEY, 2020-05)
    Nations throughout the Indo-Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target-site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo-Pacific region are described and their geographical distributions investigated using genome-wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed-models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome-wide variation. Mixed-models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome-wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo-Pacific region, pointing to undocumented mosquito invasions between countries.
  • Item
    Thumbnail Image
    Anthropogenic and natural barriers affect genetic connectivity in an Alpine butterfly
    Trense, D ; Schmidt, TL ; Yang, Q ; Chung, J ; Hoffmann, AA ; Fischer, K (WILEY, 2021-01)
    Dispersal is a key biological process serving several functions including connectivity among populations. Habitat fragmentation caused by natural or anthropogenic structures may hamper dispersal, thereby disrupting genetic connectivity. Investigating factors affecting dispersal and gene flow is important in the current era of anthropogenic global change, as dispersal comprises a vital part of a species' resilience to environmental change. Using finescale landscape genomics, we investigated gene flow and genetic structure of the Sooty Copper butterfly (Lycaena tityrus) in the Alpine Ötz valley system in Austria. We found surprisingly high levels of gene flow in L. tityrus across the region. Nevertheless, ravines, forests, and roads had effects on genetic structure, while rivers did not. The latter is surprising as roads and rivers have a similar width and run largely in parallel in our study area, pointing towards a higher impact of anthropogenic compared with natural linear structures. Additionally, we detected eleven loci potentially under thermal selection, including ones related to membranes, metabolism, and immune function. This study demonstrates the usefulness of molecular approaches in obtaining estimates of dispersal and population processes in the wild. Our results suggest that, despite high gene flow in the Alpine valley system investigated, L. tityrus nevertheless seems to be vulnerable to anthropogenically-driven habitat fragmentation. With anthropogenic rather than natural linear structures affecting gene flow, this may have important consequences for the persistence of species such as the butterfly studied here in altered landscapes.
  • Item
    Thumbnail Image
    Population genomics of two invasive mosquitoes (Aedes aegypti and Aedes albopictus) from the Indo-Pacific
    Schmidt, TL ; Chung, J ; Honnen, A-C ; Weeks, AR ; Hoffmann, AA ; Armstrong, PM (PUBLIC LIBRARY SCIENCE, 2020-07-01)
    The arbovirus vectors Aedes aegypti (yellow fever mosquito) and Ae. albopictus (Asian tiger mosquito) are both common throughout the Indo-Pacific region, where 70% of global dengue transmission occurs. For Ae. aegypti all Indo-Pacific populations are invasive, having spread from an initial native range of Africa, while for Ae. albopictus the Indo-Pacific includes invasive populations and those from the native range: putatively, India to Japan to Southeast Asia. This study analyses the population genomics of 480 of these mosquitoes sampled from 27 locations in the Indo-Pacific. We investigated patterns of genome-wide genetic differentiation to compare pathways of invasion and ongoing gene flow in both species, and to compare invasive and native-range populations of Ae. albopictus. We also tested landscape genomic hypotheses that genetic differentiation would increase with geographical distance and be lower between locations with high connectivity to human transportation routes, the primary means of dispersal at these scales. We found that genetic distances were generally higher in Ae. aegypti, with Pacific populations the most highly differentiated. The most differentiated Ae. albopictus populations were in Vanuatu, Indonesia and Sri Lanka, the latter two representing potential native-range populations and potential cryptic subspeciation respectively. Genetic distances in Ae. aegypti increased with geographical distance, while in Ae. albopictus they decreased with higher connectivity to human transportation routes. Contrary to the situation in Ae. aegypti, we found evidence of long-distance Ae. albopictus colonisation events, including colonisation of Mauritius from East Asia and of Fiji from Southeast Asia. These direct genomic comparisons indicate likely differences in dispersal ecology in these species, despite their broadly sympatric distributions and similar use of human transport to disperse. Our findings will assist biosecurity operations to trace the source of invasive material and for biocontrol operations that benefit from matching genetic backgrounds of released and local populations.