School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 25
  • Item
    Thumbnail Image
    Adaptive responses of free-living and symbiotic microalgae to simulated future ocean conditions
    Chan, WY ; Oakeshott, JG ; Buerger, P ; Edwards, OR ; van Oppen, MJH (WILEY, 2021-05)
    Marine microalgae are a diverse group of microscopic eukaryotic and prokaryotic organisms capable of photosynthesis. They are important primary producers and carbon sinks but their physiology and persistence are severely affected by global climate change. Powerful experimental evolution technologies are being used to examine the potential of microalgae to respond adaptively to current and predicted future conditions, as well as to develop resources to facilitate species conservation and restoration of ecosystem functions. This review synthesizes findings and insights from experimental evolution studies of marine microalgae in response to elevated temperature and/or pCO2 . Adaptation to these environmental conditions has been observed in many studies of marine dinoflagellates, diatoms and coccolithophores. An enhancement in traits such as growth and photo-physiological performance and an increase in upper thermal limit have been shown to be possible, although the extent and rate of change differ between microalgal taxa. Studies employing multiple monoclonal replicates showed variation in responses among replicates and revealed the stochasticity of mutations. The work to date is already providing valuable information on species' climate sensitivity or resilience to managers and policymakers but extrapolating these insights to ecosystem- and community-level impacts continues to be a challenge. We recommend future work should include in situ experiments, diurnal and seasonal fluctuations, multiple drivers and multiple starting genotypes. Fitness trade-offs, stable versus plastic responses and the genetic bases of the changes also need investigating, and the incorporation of genome resequencing into experimental designs will be invaluable.
  • Item
    Thumbnail Image
    Intracellular Bacterial Symbionts in Corals: Challenges and Future Directions
    Maire, J ; Blackall, LL ; van Oppen, MJH (MDPI, 2021-11)
    Corals are the main primary producers of coral reefs and build the three-dimensional reef structure that provides habitat to more than 25% of all marine eukaryotes. They harbor a complex consortium of microorganisms, including bacteria, archaea, fungi, viruses, and protists, which they rely on for their survival. The symbiosis between corals and bacteria is poorly studied, and their symbiotic relationships with intracellular bacteria are only just beginning to be acknowledged. In this review, we emphasize the importance of characterizing intracellular bacteria associated with corals and explore how successful approaches used to study such microorganisms in other systems could be adapted for research on corals. We propose a framework for the description, identification, and functional characterization of coral-associated intracellular bacterial symbionts. Finally, we highlight the possible value of intracellular bacteria in microbiome manipulation and mitigating coral bleaching.
  • Item
    Thumbnail Image
    Signatures of Adaptation and Acclimatization to Reef Flat and Slope Habitats in the Coral Pocillopora damicornis
    Marhoefer, SR ; Zenger, KR ; Strugnell, JM ; Logan, M ; van Oppen, MJH ; Kenkel, CD ; Bay, LK (FRONTIERS MEDIA SA, 2021-09-03)
    Strong population-by-habitat interactions across environmental gradients arise from genetic adaptation or acclimatization and represents phenotypic variation required for populations to respond to changing environmental conditions. As such, patterns of adaptation and acclimatization of reef-building corals are integral to predictions of the future of coral reefs under climate warming. The common brooding coral, Pocillopora damicornis, exhibits extensive differences in host genetic and microbial symbiont community composition between depth habitats at Heron Island in the southern Great Barrier Reef, Australia. An 18-month reciprocal field transplant experiment was undertaken to examine the environmental and genetic drivers behind variation in survival, weight gain, heat tolerance and algal symbiont community between the reef flat and slope habitats. We observed population-by-habitat interactions for in situ partial mortality and weight gain, where trait-related fitness of natives was greater than transplants in most cases, consistent with local adaptation. On average, flat colonies transplanted to the slope had a relatively low partial mortality but minimal weight gain, whereas slope colonies transplanted to the flat had relatively high partial mortality and average weight gain. Experimental heat tolerance was always higher in colonies sourced from the flat, but increased when slope colonies were transplanted to the flat, providing evidence of acclimatization in these colonies. The performance of certain slope to flat transplants may have been driven by each colony’s algal symbiont (Symbiodiniaceae) community, and flat variants were observed in a small number of slope colonies that either had a fixed flat composition before transplantation or shuffled after transplantation. Host genotypes of previously identified genetic outlier loci could not predict survival following transplantation, possibly because of low sample size and/or polygenic basis to the traits examined. Local environmental conditions and Symbiodiniaceae composition may provide insight into the adaptive potential to changing environmental conditions.
  • Item
    Thumbnail Image
    Development of a free radical scavenging bacterial consortium to mitigate oxidative stress in cnidarians
    Dungan, AM ; Bulach, D ; Lin, H ; van Oppen, MJH ; Blackall, LL (WILEY, 2021-09)
    Corals are colonized by symbiotic microorganisms that profoundly influence the animal's health. One noted symbiont is a single-celled alga (in the dinoflagellate family Symbiodiniaceae), which provides the coral with most of its fixed carbon. Thermal stress increases the production of reactive oxygen species (ROS) by Symbiodiniaceae during photosynthesis. ROS can both damage the algal symbiont's photosynthetic machinery and inhibit its repair, causing a positive feedback loop for the toxic accumulation of ROS. If not scavenged by the antioxidant network, excess ROS may trigger a signaling cascade ending with the coral host and algal symbiont disassociating in a process known as bleaching. We use Exaiptasia diaphana as a model for corals and constructed a consortium comprised of E. diaphana-associated bacteria capable of neutralizing ROS. We identified six strains with high free radical scavenging (FRS) ability belonging to the families Alteromonadaceae, Rhodobacteraceae, Flavobacteriaceae and Micrococcaceae. In parallel, we established a consortium of low FRS isolates consisting of genetically related strains. Bacterial whole genome sequences were used to identify key pathways that are known to influence ROS.
  • Item
    Thumbnail Image
    Mixed-mode bacterial transmission in the common brooding coral Pocillopora acuta
    Damjanovic, K ; Menendez, P ; Blackall, LL ; van Oppen, MJH (WILEY, 2020-01)
    Reef-building corals form associations with a huge diversity of microorganisms, which are essential for the survival and well-being of their host. While the acquisition patterns of Symbiodiniaceae microalgal endosymbionts are strongly linked to the coral's reproductive strategy, few studies have investigated the transmission mode of bacteria, especially in brooding species. Here, we relied on 16S rRNA gene and Internal Transcribed Spacer 2 marker metabarcoding in conjunction with fluorescence in situ hybridisation microscopy to describe the onset of microbial associations in the common brooding coral Pocillopora acuta. We analysed the bacterial and Symbiodiniaceae community composition in five adult colonies, their larvae, and 4-day old recruits. Larvae and recruits inherited Symbiodiniaceae, as well as a small number of bacterial strains, from their parents. Rhodobacteraceae and Endozoicomonas were among the most abundant taxa that were likely maternally transmitted to the offspring. The presence of bacterial aggregates in newly released larvae was observed with confocal microscopy, confirming the occurrence of vertical transmission of bacteria in P. acuta. We concluded that host factors, as well as the environmental bacterial pool influenced the microbiome of P. acuta.
  • Item
    Thumbnail Image
    Morphological stasis masks ecologically divergent coral species on tropical reefs
    Bongaerts, P ; Cooke, IR ; Ying, H ; Wels, D ; den Haan, S ; Hernandez-Agreda, A ; Brunner, CA ; Dove, S ; Englebert, N ; Eyal, G ; Foret, S ; Grinblat, M ; Hay, KB ; Harii, S ; Hayward, DC ; Lin, Y ; Morana, MC ; Moya, A ; Muir, P ; Sinniger, F ; Smallhorn-West, P ; Torda, G ; Ragan, MA ; van Oppen, MJH ; Hoegh-Guldberg, O (CELL PRESS, 2021-06-07)
    Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden" conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively.
  • Item
    Thumbnail Image
    Microbiome characterization of defensive tissues in the model anemone Exaiptasia diaphana
    Maire, J ; Blackall, LL ; van Oppen, MJH (BMC, 2021-05-21)
    BACKGROUND: Coral reefs are among the most diverse and productive ecosystems on Earth. This success relies on the coral's association with a wide range of microorganisms, including dinoflagellates of the family Symbiodiniaceae that provide coral hosts with most of their organic carbon requirements. While bacterial associates have long been overlooked, research on these microorganisms is gaining traction, and deciphering bacterial identity and function is greatly enhancing our understanding of cnidarian biology. Here, we investigated bacterial communities in defensive tissues (acontia) of the coral model, the sea anemone Exaiptasia diaphana. Acontia are internal filaments that are ejected upon detection of an external threat and release toxins to repel predators. RESULTS: Using culturing techniques and 16S rRNA gene metabarcoding we identified bacterial communities associated with acontia of four Great Barrier Reef-sourced E. diaphana genotypes. We show that bacterial communities are similar across genotypes, and dominated by Alteromonadaceae, Vibrionaceae, Rhodobacteraceae, and Saprospiraceae. By analyzing abundant amplicon sequence variants (ASVs) from metabarcoding data from acontia and comparing these to data from whole anemones, we identified five potentially important bacterial genera of the acontia microbiome: Vibrio, Sulfitobacter, Marivita, Alteromonas, and Lewinella. The role of these bacteria within the acontia remains uninvestigated but could entail assistance in defense processes such as toxin production. CONCLUSIONS: This study provides insight into potential bacterial involvement in cnidarian defense tissues and highlights the need to study bacterial communities in individual compartments within a holobiont.
  • Item
    Thumbnail Image
    Microbiota characterization of Exaiptasia diaphana from the Great Barrier Reef.
    Hartman, LM ; van Oppen, MJH ; Blackall, LL (bmc springer nature, 2020-04-05)
    BACKGROUND: Coral reefs have sustained damage of increasing scale and frequency due to climate change, thereby intensifying the need to elucidate corals' biological characteristics, including their thermal tolerance and microbial symbioses. The sea anemone, Exaiptasia diaphana, has proven an ideal coral model for many studies due to its close phylogenetic relationship and shared traits, such as symbiosis with algae of the family Symbiodiniaceae. However, established E. diaphana clonal lines are not available in Australia thus limiting the ability of Australian scientists to conduct research with this model. To help address this, the bacterial and Symbiodiniaceae associates of four Great Barrier Reef (GBR)-sourced E. diaphana genotypes established in laboratory aquaria and designated AIMS1-4, and from proxies of wild GBR E. diaphana were identified by metabarcoding of the bacterial 16S rRNA gene and eukaryotic rRNA gene ITS2 region. The relationship between AIMS1-4 and their bacterial associates was investigated, as was bacterial community phenotypic potential. Existing data from two existing anemone clonal lines, CC7 and H2, were included for comparison. RESULTS: Overall, 2238 bacterial amplicon sequence variants (ASVs) were observed in the AIMS1-4 bacterial communities, which were dominated by Proteobacteria and Bacteroidetes, together comprising > 90% relative abundance. Although many low abundance bacterial taxa varied between the anemone genotypes, the AIMS1-4 communities did not differ significantly. A significant tank effect was identified, indicating an environmental effect on the microbial communities. Bacterial community richness was lower in all lab-maintained E. diaphana compared to the wild proxies, suggesting a reduction in bacterial diversity and community phenotypic potential due to culturing. Seventeen ASVs were common to every GBR lab-cultured anemone, however five were associated with the Artemia feedstock, making their specific association to E. diaphana uncertain. The dominant Symbiodiniaceae symbiont in all GBR anemones was Breviolum minutum. CONCLUSION: Despite differences in the presence and abundance of low abundance taxa, the bacterial communities of GBR-sourced lab-cultured E. diaphana are generally uniform and comparable to communities reported for other lab-cultured E. diaphana. The data presented here add to the global E. diaphana knowledge base and make an important contribution to the establishment of a GBR-sourced coral model organism.
  • Item
    Thumbnail Image
    Maternal effects in gene expression of interspecific coral hybrids
    Chan, WY ; Chung, J ; Peplow, LM ; Hoffmann, AA ; van Oppen, MJH (Wiley, 2021-01)
    Maternal effects have been well documented for offspring morphology and life history traits in plants and terrestrial animals, yet little is known about maternal effects in corals. Further, few studies have explored maternal effects in gene expression. In a previous study, F1 interspecific hybrid and purebred larvae of the coral species Acropora tenuis and Acropora loripes were settled and exposed to ambient or elevated temperature and pCO2 conditions for 7 months. At this stage, the hybrid coral recruits from both ocean conditions exhibited strong maternal effects in several fitness traits. We conducted RNA‐sequencing on these corals and showed that gene expression of the hybrid Acropora also exhibited clear maternal effects. Only 40 genes were differentially expressed between hybrids and their maternal progenitor. In contrast, ~2000 differentially expressed genes were observed between hybrids and their paternal progenitors, and between the reciprocal F1 hybrids. These results indicate that maternal effects in coral gene expression can be long‐lasting. Unlike findings from most short‐term stress experiments in corals, no genes were differentially expressed in the hybrid nor purebred offspring after seven months of exposure to elevated temperature and pCO2 conditions.
  • Item
    Thumbnail Image
    Symbiodiniaceae-bacteria interactions: rethinking metabolite exchange in reef-building corals as multi-partner metabolic networks
    Matthews, JL ; Raina, J-B ; Kahlke, T ; Seymour, JR ; van Oppen, MJH ; Suggett, DJ (WILEY, 2020-05)
    The intimate relationship between scleractinian corals and their associated microorganisms is fundamental to healthy coral reef ecosystems. Coral-associated microbes (Symbiodiniaceae and other protists, bacteria, archaea, fungi and viruses) support coral health and resilience through metabolite transfer, inter-partner signalling, and genetic exchange. However, much of our understanding of the coral holobiont relationship has come from studies that have investigated either coral-Symbiodiniaceae or coral-bacteria interactions in isolation, while relatively little research has focused on other ecological and metabolic interactions potentially occurring within the coral multi-partner symbiotic network. Recent evidences of intimate coupling between phytoplankton and bacteria have demonstrated that obligate resource exchange between partners fundamentally drives their ecological success. Here, we posit that similar associations with bacterial consortia regulate Symbiodiniaceae productivity and are in turn central to the health of corals. Indeed, we propose that this bacteria-Symbiodiniaceae-coral relationship underpins the coral holobiont's nutrition, stress tolerance and potentially influences the future survival of coral reef ecosystems under changing environmental conditions. Resolving Symbiodiniaceae-bacteria associations is therefore a logical next step towards understanding the complex multi-partner interactions occurring in the coral holobiont.