School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Host Genotypic Effect on Algal Symbiosis Establishment in the Coral Model, the Anemone Exaiptasia diaphana, From the Great Barrier Reef
    Tortorelli, G ; Belderok, R ; Davy, SK ; McFadden, G ; van Oppen, MJH (FRONTIERS MEDIA SA, 2020-01-22)
  • Item
    Thumbnail Image
    Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae)
    Maor-Landaw, K ; van Oppen, MJH ; McFadden, G (WILEY, 2020-01)
    Coral-dinoflagellate symbiosis underpins the evolutionary success of corals reefs. Successful exchange of molecules between the cnidarian host and the Symbiodiniaceae algae enables the mutualistic partnership. The algae translocate photosynthate to their host in exchange for nutrients and shelter. The photosynthate must traverse multiple membranes, most likely facilitated by transporters. Here, we compared gene expression profiles of cultured, free-living Breviolum minutum with those of the homologous symbionts freshly isolated from the sea anemone Exaiptasia diaphana, a widely used model for coral hosts. Additionally, we assessed expression levels of a list of candidate host transporters of interest in anemones with and without symbionts. Our transcriptome analyses highlight the distinctive nature of the two algal life stages, with many gene expression level changes correlating to the different morphologies, cell cycles, and metabolisms adopted in hospite versus free-living. Morphogenesis-related genes that likely underpin the metamorphosis process observed when symbionts enter a host cell were up-regulated. Conversely, many down-regulated genes appear to be indicative of the protective and confined nature of the symbiosome. Our results emphasize the significance of transmembrane transport to the symbiosis, and in particular of ammonium and sugar transport. Further, we pinpoint and characterize candidate transporters-predicted to be localized variously to the algal plasma membrane, the host plasma membrane, and the symbiosome membrane-that likely serve pivotal roles in the interchange of material during symbiosis. Our study provides new insights that expand our understanding of the molecular exchanges that underpin the cnidarian-algal symbiotic relationship.
  • Item
    Thumbnail Image
    Exaiptasia diaphana from the great barrier reef: a valuable resource for coral symbiosis research
    Dungan, AM ; Hartman, LM ; Tortorelli, G ; Belderok, R ; Lamb, AM ; Pisan, L ; McFadden, GI ; Blackall, LL ; van Oppen, MJH (SPRINGER, 2020-02-06)
    The sea anemone, Exaiptasia diaphana, previously known as Exaiptasia pallida or Aiptasia pallida, has become increasingly popular as a model for cnidarian-microbiome symbiosis studies due to its relatively rapid growth, ability to reproduce sexually and asexually, and symbiosis with diverse prokaryotes and the same microalgal symbionts (family Symbiodiniaceae) as its coral relatives. Clonal E. diaphana strains from Hawaii, the Atlantic Ocean, and Red Sea are now established for use in research. Here, we introduce Great Barrier Reef (GBR)-sourced E. diaphana strains as additions to the model repertoire. Sequencing of the 18S rRNA gene confirmed the anemones to be E. diaphana while genome-wide single nucleotide polymorphism analysis revealed four distinct genotypes. Based on Exaiptasia-specific inter-simple sequence repeat (ISSR)-derived sequence characterized amplified region (SCAR) marker and gene loci data, these four E. diaphana genotypes are distributed across several divergent phylogenetic clades with no clear phylogeographical pattern. The GBR E. diaphana genotypes comprised three females and one male, which all host Breviolum minutum as their homologous Symbiodiniaceae endosymbiont. When acclimating to an increase in light levels from 12 to 28 μmol photons m−2 s−1, the genotypes exhibited significant variation in maximum quantum yield of Symbiodiniaceae photosystem II and Symbiodiniaceae cell density. The comparatively high levels of physiological and genetic variability among GBR anemone genotypes make these animals representative of global E. diaphana diversity and thus excellent model organisms. The addition of these GBR strains to the worldwide E. diaphana collection will contribute to cnidarian symbiosis research, particularly in relation to the climate resilience of coral reefs.