School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    Establishment of Wolbachia Strain wAlbB in Malaysian Populations of Aedes aegypti for Dengue Control
    Nazni, WA ; Hoffmann, AA ; NoorAfizah, A ; Cheong, YL ; Mancini, MV ; Golding, N ; Kamarul, GMR ; Arif, MAK ; Thohir, H ; NurSyamimi, H ; ZatilAqmar, MZ ; NurRuqqayah, M ; NorSyazwani, A ; Faiz, A ; Irfan, F-RMN ; Rubaaini, S ; Nuradila, N ; Nizam, NMN ; Irwan, SM ; Endersby-Harshman, NM ; White, VL ; Ant, TH ; Herd, CS ; Hasnor, AH ; AbuBakar, R ; Hapsah, DM ; Khadijah, K ; Kamilan, D ; Lee, SC ; Paid, YM ; Fadzilah, K ; Topek, O ; Gill, BS ; Lee, HL ; Sinkins, SP (CELL PRESS, 2019-12-16)
    Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates.
  • Item
    Thumbnail Image
    A diagnostic primer pair to distinguish between wMel and wAlbB Wolbachia infections
    Lau, M-J ; Hoffmann, AA ; Endersby-Harshman, NM ; Moreira, LA (PUBLIC LIBRARY SCIENCE, 2021-09-23)
    Detection of the Wolbachia endosymbiont in Aedes aegypti mosquitoes through real-time polymerase chain reaction assays is widely used during and after Wolbachia releases in dengue reduction trials involving the wMel and wAlbB strains. Although several different primer pairs have been applied in current successful Wolbachia releases, they cannot be used in a single assay to distinguish between these strains. Here, we developed a new diagnostic primer pair, wMwA, which can detect the wMel or wAlbB infection in the same assay. We also tested current Wolbachia primers and show that there is variation in their performance when they are used to assess the relative density of Wolbachia. The new wMwA primers provide an accurate and efficient estimate of the presence and density of both Wolbachia infections, with practical implications for Wolbachia estimates in field collected Ae. aegypti where Wolbachia releases have taken place.
  • Item
    Thumbnail Image
    Voltage-sensitive sodium channel (Vssc) mutations associated with pyrethroid insecticide resistance in Aedes aegypti (L.) from two districts of Jeddah, Kingdom of Saudi Arabia: baseline information for a Wolbachia release program
    Endersby-Harshman, NM ; Ali, A ; Alhumrani, B ; Alkuriji, MA ; Al-Fageeh, MB ; Al-Malik, A ; Alsuabeyl, MS ; Elfekih, S ; Hoffmann, AA (BMC, 2021-07-12)
    BACKGROUND: Dengue suppression often relies on control of the mosquito vector, Aedes aegypti, through applications of insecticides of which the pyrethroid group has played a dominant role. Insecticide resistance is prevalent in Ae. aegypti around the world, and the resulting reduction of insecticide efficacy is likely to exacerbate the impact of dengue. Dengue has been a public health problem in Saudi Arabia, particularly in Jeddah, since its discovery there in the 1990s, and insecticide use for vector control is widespread throughout the city. An alternative approach to insecticide use, based on blocking dengue transmission in mosquitoes by the endosymbiont Wolbachia, is being trialed in Jeddah following the success of this approach in Australia and Malaysia. Knowledge of insecticide resistance status of mosquito populations in Jeddah is a prerequisite for establishing a Wolbachia-based dengue control program as releases of Wolbachia mosquitoes succeed when resistance status of the release population is similar to that of the wild population. METHODS: WHO resistance bioassays of mosquitoes with deltamethrin, permethrin and DDT were used in conjunction with TaqMan® SNP Genotyping Assays to characterize mutation profiles of Ae. aegypti. RESULTS: Screening of the voltage-sensitive sodium channel (Vssc), the pyrethroid target site, revealed mutations at codons 989, 1016 and 1534 in Ae. aegypti from two districts of Jeddah. The triple mutant homozygote (1016G/1534C/989P) was confirmed from Al Safa and Al Rawabi. Bioassays with pyrethroids (Type I and II) and DDT showed that mosquitoes were resistant to each of these compounds based on WHO definitions. An association between Vssc mutations and resistance was established for the Type II pyrethroid, deltamethrin, with one genotype (989P/1016G/1534F) conferring a survival advantage over two others (989S/1016V/1534C and the triple heterozygote). An indication of synergism of Type I pyrethroid activity with piperonyl butoxide suggests that detoxification by cytochrome P450s accounts for some of the pyrethroid resistance response in Ae. aegypti populations from Jeddah. CONCLUSIONS: The results provide a baseline for monitoring and management of resistance as well as knowledge of Vssc genotype frequencies required in Wolbachia release populations to ensure homogeneity with the target field population. Vssc mutation haplotypes observed show some similarity with those from Ae. aegypti in southeast Asia and the Indo-Pacific, but the presence of the triple mutant haplotype in three genotypes indicates that the species in this region may have a unique population history.
  • Item
    Thumbnail Image
    Heterogeneous genetic invasions of three insecticide resistance mutations in Indo-Pacific populations of Aedes aegypti (L.)
    Endersby-Harshman, NM ; Schmidt, TL ; Chung, J ; van Rooyen, A ; Weeks, AR ; Hoffmann, AA (WILEY, 2020-04-21)
    Nations throughout the Indo-Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target-site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo-Pacific region are described and their geographical distributions investigated using genome-wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed-models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome-wide variation. Mixed-models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome-wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo-Pacific region, pointing to undocumented mosquito invasions between countries.
  • Item
    Thumbnail Image
    Frequency of kdr mutations in the voltage-sensitive sodium channel (V-SSC) gene in Aedes aegypti from Yogyakarta and implications for Wolbachia-infected mosquito trials
    Wuliandari, JR ; Hoffmann, AA ; Tantowijoyo, W ; Endersby-Harshman, NM (BMC, 2020-08-24)
    Background In the inner city of Yogyakarta, Indonesia, insecticide resistance is expected in the main dengue vector, Aedes aegypti, because of the intensive local application of pyrethroid insecticides. However, detailed information about the nature of resistance in this species is required to assist the release of Wolbachia mosquitoes in a dengue control program, so that we can ensure that insecticide resistance in the strain of Ae. aegypti being released matches that of the background population. Methods High-resolution melt genotyping was used to screen for kdr mutations associated with pyrethroid resistance in the voltage-sensitive sodium channel (VSSC) gene in Ae. aegypti of some areas in the inner city of Yogyakarta. Results The results show that the V1016G mutation predominated, with individuals homozygous for the 1016G allele at a frequency of 82.1% and the mutant allele G at a frequency of 92%. Two patterns of co-occurrence of mutations were detected in this study, homozygous individuals V1016G/S989P; and heterozygous individuals V1016G/F1534C/S989P. We found the simultaneous occurrence of kdr mutations V1016G and F1534C at all collection sites, but not within individual mosquitoes. Homozygous mutants at locus 1016 were homozygous wild-type at locus 1534 and vice versa, and heterozygous V1016G were also heterozygous for F1534C. The most common tri-locus genotype co-occurrences were homozygous mutant 1016GG and homozygous wild-type FF1534, combined with homozygous mutant 989PP (GG/FF/PP) at a frequency of 38.28%. Conclusions Given the relatively small differences in frequency of resistance alleles across the city area, locality variations in resistance should have minor implications for the success of Wolbachia mosquito trials being undertaken in the Yogyakarta area.
  • Item
    Thumbnail Image
    Population Genetic Structure of Aedes (Stegomyia) aegypti (L.) at a Micro-Spatial Scale in Thailand: Implications for a Dengue Suppression Strategy
    Olanratmanee, P ; Kittayapong, P ; Chansang, C ; Hoffmann, AA ; Weeks, AR ; Endersby, NM ; Hirayama, K (PUBLIC LIBRARY SCIENCE, 2013-01-01)
    BACKGROUND: The genetic population structure of Aedes (Stegomyia) aegypti (L.), the main vector of dengue virus, is being investigated in areas where a novel dengue suppression program is to be implemented. The aim of the program is to release and establish mosquito populations with impaired virus transmission capabilities. To model effects of the release and devise protocols for its implementation, information about the genetic structure of populations at a range of spatial scales is required. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates a potential release site in the Hua Sam Rong Subdistrict of Plaeng Yao District, Chachoengsao Province, in eastern Thailand which comprises a complex of five villages within a 10 km radius. Aedes aegypti resting indoors was sampled at four different times of year from houses within the five villages. Genetic markers were used to screen the mosquitoes: two Exon Primed Intron Crossing (EPIC) markers and five microsatellite markers. The raw allele size was determined using several statistical software packages to analyze the population structure of the mosquito. Estimates of effective population size for each village were low, but there was no evidence of genetic isolation by geographic distance. CONCLUSIONS: The presence of temporary genetic structure is possibly caused by genetic drift due to large contributions of adults from a few breeding containers. This suggests that the introduction of mosquitoes into an area needs to proceed through multiple releases and targeting of sites where mosquitoes are emerging in large numbers.
  • Item
    Thumbnail Image
    Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments
    Yeap, HL ; Axford, JK ; Popovici, J ; Endersby, NM ; Iturbe-Ormaetxe, I ; Ritchie, SA ; Hoffmann, AA (BMC, 2014-02-03)
    BACKGROUND: Recent releases have been carried out with Aedes aegypti mosquitoes infected with the wMelPop mosquito cell-line adapted (wMelPop-CLA) strain of Wolbachia. This infection introduced from Drosophila provides strong blockage of dengue and other arboviruses but also has large fitness costs in laboratory tests. The releases were used to evaluate the fitness of released infected mosquitoes, and (following termination of releases) to test for any effects of wMelPop-CLA on wing size and shape when mosquitoes were reared under field conditions. METHODS: We monitored gravid females via double sticky traps to assess the reproductive success of wMelPop-CLA-infected females and also sampled the overall mosquito population post-release using Biogent Sentinel traps. Morphometric analyses were used to evaluate infection effects on wing shape as well as size. RESULTS: Oviposition success as assessed through double sticky traps was unrelated to size of released mosquitoes. However, released mosquitoes with lower wing loading were more successful. Furthermore, wMelPop-CLA-infected mosquitoes had 38.3% of the oviposition success of uninfected mosquitoes based on the predicted infection frequency after release. Environmental conditions affected wing shape and particularly size across time in uninfected mosquitoes, but not in naturally-reared wMelPop-CLA-infected mosquitoes. Although the overall size and shape do not differ between naturally-reared wMelPop-CLA-infected and uninfected mosquitoes, the infected mosquitoes tended to have smaller wings than uninfected mosquitoes during the cooler November in comparison to December. CONCLUSION: These results confirm the lower fitness of wMelPop-CLA infection under field conditions, helping to explain challenges associated with a successful invasion by this strain. In the long run, invasion may depend on releasing strains carrying insecticide resistance or egg desiccation resistance, combined with an active pre-release population suppression program.
  • Item
    Thumbnail Image
    Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions
    Ross, PA ; Endersby, NM ; Hoffmann, AA ; Kittayapong, P (PUBLIC LIBRARY SCIENCE, 2016-01-01)
    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments.
  • Item
    Thumbnail Image
    Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations
    Yeap, HL ; Rasic, G ; Endersby-Harshman, NM ; Lee, SF ; Arguni, E ; Le Nguyen, H ; Hoffmann, AA (SPRINGERNATURE, 2016-03-01)
    Wolbachia is the most widespread endosymbiotic bacterium of insects and other arthropods that can rapidly invade host populations. Deliberate releases of Wolbachia into natural populations of the dengue fever mosquito, Aedes aegypti, are used as a novel biocontrol strategy for dengue suppression. Invasion of Wolbachia through the host population relies on factors such as high fidelity of the endosymbiont transmission and limited immigration of uninfected individuals, but these factors can be difficult to measure. One way of acquiring relevant information is to consider mitochondrial DNA (mtDNA) variation alongside Wolbachia in field-caught mosquitoes. Here we used diagnostic mtDNA markers to differentiate infection-associated mtDNA haplotypes from those of the uninfected mosquitoes at release sites. Unique haplotypes associated with Wolbachia were found at locations outside Australia. We also performed mathematical and qualitative analyses including modelling the expected dynamics of the Wolbachia and mtDNA variants during and after a release. Our analyses identified key features in haplotype frequency patterns to infer the presence of imperfect maternal transmission of Wolbachia, presence of immigration and possibly incomplete cytoplasmic incompatibility. We demonstrate that ongoing screening of the mtDNA variants should provide information on maternal leakage and immigration, particularly in releases outside Australia. As we demonstrate in a case study, our models to track the Wolbachia dynamics can be successfully applied to temporal studies in natural populations or Wolbachia release programs, as long as there is co-occurring mtDNA variation that differentiates infected and uninfected populations.
  • Item
    Thumbnail Image
    Tracking genetic invasions: Genome-wide single nucleotide polymorphisms reveal the source of pyrethroid-resistant Aedes aegypti (yellow fever mosquito) incursions at international ports
    Schmidt, TL ; van Rooyen, AR ; Chung, J ; Endersby-Harshman, NM ; Griffin, PC ; Sly, A ; Hoffmann, AA ; Weeks, AR (WILEY, 2019-06-01)
    Biological invasions are increasing globally in number and extent despite efforts to restrict their spread. Knowledge of incursion pathways is necessary to prevent new invasions and to design effective biosecurity protocols at source and recipient locations. This study uses genome-wide single nucleotide polymorphisms (SNPs) to determine the origin of 115 incursive Aedes aegypti(yellow fever mosquito) detected at international ports in Australia and New Zealand. We also genotyped mosquitoes at three point mutations in the voltage-sensitive sodium channel (Vssc) gene: V1016G, F1534C and S989P. These mutations confer knockdown resistance to synthetic pyrethroid insecticides, widely used for controlling invertebrate pests. We first delineated reference populations using Ae. aegypti sampled from 15 locations in Asia, South America, Australia and the Pacific Islands. Incursives were assigned to these populations using discriminant analysis of principal components (DAPC) and an assignment test with a support vector machine predictive model. Bali, Indonesia, was the most common origin of Ae. aegypti detected in Australia, while Ae. aegypti detected in New Zealand originated from Pacific Islands such as Fiji. Most incursives had the same allelic genotype across the three Vsscgene point mutations, which confers strong resistance to synthetic pyrethroids, the only insecticide class used in current, widely implemented aircraft disinsection protocols endorsed by the World Health Organization (WHO). Additionally, all internationally assigned Ae. aegypti had Vssc point mutations linked to pyrethroid resistance that are not found in Australian populations. These findings demonstrate that protocols for preventing introductions of invertebrates must consider insecticide resistance, and highlight the usefulness of genomic data sets for managing global biosecurity objectives.