School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Fungicides have transgenerational effects on Rhopalosiphum padi but not their endosymbionts
    Chirgwin, E ; Yang, Q ; Umina, PA ; Gill, A ; Soleimannejad, S ; Gu, X ; Ross, P ; Hoffmann, AA (JOHN WILEY & SONS LTD, 2022-11)
  • Item
    Thumbnail Image
    Wolbachia inhibits ovarian formation and increases blood feeding rate in female Aedes aegypti
    Lau, M-J ; Ross, PA ; Endersby-Harshman, NM ; Yang, Q ; Hoffmann, AA ; Bowen, RA (PUBLIC LIBRARY SCIENCE, 2022-11)
    Wolbachia, a gram-negative endosymbiotic bacterium widespread in arthropods, is well-known for changing the reproduction of its host in ways that increase its rate of spread, but there are also costs to hosts that can reduce this. Here we investigated a novel reproductive alteration of Wolbachia wAlbB on its host Aedes aegypti, using studies on mosquito life history traits, ovarian dissection, as well as gene expression assays. We found that an extended period of the larval stage as well as the egg stage (as previously shown) can increase the proportion of Wolbachia-infected females that become infertile; an effect which was not observed in uninfected females. Infertile females had incomplete ovarian formation and also showed a higher frequency of blood feeding following a prior blood meal, indicating that they do not enter a complete gonotrophic cycle. Treatments leading to infertility also decreased the expression of genes related to reproduction, especially the vitellogenin receptor gene whose product regulates the uptake of vitellogenin (Vg) into ovaries. Our results demonstrate effects associated with the development of infertility in wAlbB-infected Ae. aegypti females with implications for Wolbachia releases. The results also have implications for the evolution of Wolbachia infections in novel hosts.
  • Item
    Thumbnail Image
    A wMel Wolbachia variant in Aedes aegypti from field-collected Drosophila melanogaster with increased phenotypic stability under heat stress
    Gu, X ; Ross, PA ; Rodriguez-Andres, J ; Robinson, KL ; Yang, Q ; Lau, M-J ; Hoffmann, AA (WILEY, 2022-04)
    Mosquito-borne diseases remain a major cause of morbidity and mortality. Population replacement strategies involving the wMel strain of Wolbachia are being used widely to control mosquito-borne diseases. However, these strategies may be influenced by temperature because wMel is vulnerable to heat. wMel infections in Drosophila melanogaster are genetically diverse, but few transinfections of wMel variants have been generated in Aedes aegypti. Here, we successfully transferred a wMel variant (termed wMelM) originating from a field-collected D. melanogaster into Ae. aegypti. The new wMelM variant (clade I) is genetically distinct from the original wMel transinfection (clade III), and there are no genomic differences between wMelM in its original and transinfected host. We compared wMelM with wMel in its effects on host fitness, temperature tolerance, Wolbachia density, vector competence, cytoplasmic incompatibility and maternal transmission under heat stress in a controlled background. wMelM showed a higher heat tolerance than wMel, likely due to higher overall densities within the mosquito. Both wMel variants had minimal host fitness costs, complete cytoplasmic incompatibility and maternal transmission, and dengue virus blocking under laboratory conditions. Our results highlight phenotypic differences between Wolbachia variants and wMelM shows potential as an alternative strain in areas with strong seasonal temperature fluctuations.
  • Item
    Thumbnail Image
    Sex-specific distribution and classification of Wolbachia infections and mitochondrial DNA haplogroups in Aedes albopictus from the Indo-Pacific
    Yang, Q ; Chung, J ; Robinson, KL ; Schmidt, TL ; Ross, PA ; Liang, J ; Hoffmann, AA ; Kittayapong, P (PUBLIC LIBRARY SCIENCE, 2022-04)
    The arbovirus vector Aedes albopictus (Asian tiger mosquito) is common throughout the Indo-Pacific region, where most global dengue transmission occurs. We analysed population genomic data and tested for cryptic species in 160 Ae. albopictus sampled from 16 locations across this region. We found no evidence of cryptic Ae. albopictus but found multiple intraspecific COI haplotypes partitioned into groups representing three Asian lineages: East Asia, Southeast Asia and Indonesia. Papua New Guinea (PNG), Vanuatu and Christmas Island shared recent coancestry, and Indonesia and Timor-Leste were likely invaded from East Asia. We used a machine learning trained on morphologically sexed samples to classify sexes using multiple genetic features and then characterized the wAlbA and wAlbB Wolbachia infections in 664 other samples. The wAlbA and wAlbB infections as detected by qPCR showed markedly different patterns in the sexes. For females, most populations had a very high double infection incidence, with 67% being the lowest value (from Timor-Leste). For males, the incidence of double infections ranged from 100% (PNG) to 0% (Vanuatu). Only 6 females were infected solely by the wAlbA infection, while rare uninfected mosquitoes were found in both sexes. The wAlbA and wAlbB densities varied significantly among populations. For mosquitoes from Torres Strait and Vietnam, the wAlbB density was similar in single-infected and superinfected (wAlbA and wAlbB) mosquitoes. There was a positive association between wAlbA and wAlbB infection densities in superinfected Ae. albopictus. Our findings provide no evidence of cryptic species of Ae. albopictus in the region and suggest site-specific factors influencing the incidence of Wolbachia infections and their densities. We also demonstrate the usefulness of ddRAD tag depths as sex-specific mosquito markers. The results provide baseline data for the exploitation of Wolbachia-induced cytoplasmic incompatibility (CI) in dengue control.
  • Item
    Thumbnail Image
    A decade of stability for wMel Wolbachia in natural Aedes aegypti populations
    Ross, PP ; Robinson, KM ; Yang, Q ; Callahan, AA ; Schmidt, T ; Axford, J ; Coquilleau, MA ; Staunton, K ; Townsend, M ; Ritchie, S ; Lau, M-J ; Gu, X ; Hoffmann, A ; Dimopoulos, G (PUBLIC LIBRARY SCIENCE, 2022-02-23)
    Mosquitoes carrying Wolbachia endosymbionts are being released in many countries for arbovirus control. The wMel strain of Wolbachia blocks Aedes-borne virus transmission and can spread throughout mosquito populations by inducing cytoplasmic incompatibility. Aedes aegypti mosquitoes carrying wMel were first released into the field in Cairns, Australia, over a decade ago, and with wider releases have resulted in the near elimination of local dengue transmission. The long-term stability of Wolbachia effects is critical for ongoing disease suppression, requiring tracking of phenotypic and genomic changes in Wolbachia infections following releases. We used a combination of field surveys, phenotypic assessments, and Wolbachia genome sequencing to show that wMel has remained stable in its effects for up to a decade in Australian Ae. aegypti populations. Phenotypic comparisons of wMel-infected and uninfected mosquitoes from near-field and long-term laboratory populations suggest limited changes in the effects of wMel on mosquito fitness. Treating mosquitoes with antibiotics used to cure the wMel infection had limited effects on fitness in the next generation, supporting the use of tetracycline for generating uninfected mosquitoes without off-target effects. wMel has a temporally stable within-host density and continues to induce complete cytoplasmic incompatibility. A comparison of wMel genomes from pre-release (2010) and nine years post-release (2020) populations show few genomic differences and little divergence between release locations, consistent with the lack of phenotypic changes. These results indicate that releases of Wolbachia-infected mosquitoes for population replacement are likely to be effective for many years, but ongoing monitoring remains important to track potential evolutionary changes.
  • Item
    Thumbnail Image
    Genetic stability of Aedes aegypti populations following invasion by wMel Wolbachia
    Lau, M-J ; Schmidt, TL ; Yang, Q ; Chung, J ; Sankey, L ; Ross, PA ; Hoffmann, AA (BMC, 2021-12-14)
    BACKGROUND: Wolbachia wMel is the most commonly used strain in rear and release strategies for Aedes aegypti mosquitoes that aim to inhibit the transmission of arboviruses such as dengue, Zika, Chikungunya and yellow fever. However, the long-term establishment of wMel in natural Ae. aegypti populations raises concerns that interactions between Wolbachia wMel and Ae. aegypti may lead to changes in the host genome, which could affect useful attributes of Wolbachia that allow it to invade and suppress disease transmission. RESULTS: We applied an evolve-and-resequence approach to study genome-wide genetic changes in Ae. aegypti from the Cairns region, Australia, where Wolbachia wMel was first introduced more than 10 years ago. Mosquito samples were collected at three different time points in Gordonvale, Australia, covering the phase before (2010) and after (2013 and 2018) Wolbachia releases. An additional three locations where Wolbachia replacement happened at different times across the last decade were also sampled in 2018. We found that the genomes of mosquito populations mostly remained stable after Wolbachia release, with population differences tending to reflect the geographic location of the populations rather than Wolbachia infection status. However, outlier analysis suggests that Wolbachia may have had an influence on some genes related to immune response, development, recognition and behavior. CONCLUSIONS: Ae. aegypti populations remained geographically distinct after Wolbachia wMel releases in North Australia despite their Wolbachia infection status. At some specific genomic loci, we found signs of selection associated with Wolbachia, suggesting potential evolutionary impacts can happen in the future and further monitoring is warranted.
  • Item
    Thumbnail Image
    A LAMP assay for the rapid and robust assessment of Wolbachia infection in Aedes aegypti under field and laboratory conditions
    Jasper, ME ; Yang, Q ; Ross, PA ; Endersby-Harshman, N ; Bell, N ; Hoffmann, AA ; Moreira, LA (PUBLIC LIBRARY SCIENCE, 2019-11-20)
    With Wolbachia-based arbovirus control programs being scaled and operationalised around the world, cost effective and reliable detection of Wolbachia in field samples and laboratory stocks is essential for quality control. Here we validate a modified loop-mediated isothermal amplification (LAMP) assay for routine scoring of Wolbachia in mosquitoes from laboratory cultures and the field, applicable to any setting. We show that this assay is a rapid and robust method for highly sensitive and specific detection of wAlbB Wolbachia infection within Aedes aegypti under a variety of conditions. We test the quantitative nature of the assay by evaluating pooled mixtures of Wolbachia-infected and uninfected mosquitoes and show that it is capable of estimating infection frequencies, potentially circumventing the need to perform large-scale individual analysis for wAlbB infection status in the course of field monitoring. These results indicate that LAMP assays are useful for routine screening particularly under field conditions away from laboratory facilities.
  • Item
    Thumbnail Image
    Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti
    Ross, PA ; Axford, JK ; Yang, Q ; Staunton, KM ; Ritchie, SA ; Richardson, KM ; Hoffmann, AA ; Kohl, A (PUBLIC LIBRARY SCIENCE, 2020-01)
    Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being released into natural mosquito populations in the tropics as a way of reducing dengue transmission. High temperatures adversely affect wMel, reducing Wolbachia density and cytoplasmic incompatibility in some larval habitats that experience large temperature fluctuations. We monitored the impact of a 43.6°C heatwave on the wMel infection in a natural population in Cairns, Australia, where wMel was first released in 2011 and has persisted at a high frequency. Wolbachia infection frequencies in the month following the heatwave were reduced to 83% in larvae sampled directly from field habitats and 88% in eggs collected from ovitraps, but recovered to be near 100% four months later. Effects of the heatwave on wMel appeared to be stage-specific and delayed, with reduced frequencies and densities in field-collected larvae and adults reared from ovitraps but higher frequencies in field-collected adults. Laboratory experiments showed that the effects of heatwaves on cytoplasmic incompatibility and density are life stage-specific, with first instar larvae being the most vulnerable to temperature effects. Our results indicate that heatwaves in wMel-infected populations will have only temporary effects on Wolbachia frequencies and density once the infection has established in the population. Our results are relevant to ongoing releases of wMel-infected Ae. aegypti in several tropical countries.
  • Item
    Thumbnail Image
    An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aegypti?
    Ross, PA ; Callahan, AG ; Yang, Q ; Jasper, M ; Arif, MAK ; Afizah, AN ; Nazni, WA ; Hoffmann, AA (Wiley, 2020-02)
    Wolbachia are maternally inherited endosymbiotic bacteria found within many insect species. Aedes mosquitoes experimentally infected with Wolbachia are being released into the field for Aedes‐ borne disease control. These Wolbachia infections induce cytoplasmic incompatibility which is used to suppress populations through incompatible matings or replace populations through the reproductive advantage provided by this mechanism. However, the presence of naturally occurring Wolbachia in target populations could interfere with both population replacement and suppression programs depending on the compatibility patterns between strains. Aedes aegypti were thought to not harbor Wolbachia naturally but several recent studies have detected Wolbachia in natural populations of this mosquito. We therefore review the evidence for natural Wolbachia infections in A. aegypti to date and discuss limitations of these studies. We draw on research from other mosquito species to outline the potential implications of natural Wolbachia infections in A. aegypti for disease control. To validate previous reports, we obtained a laboratory population of A. aegypti from New Mexico, USA, that harbors a natural Wolbachia infection, and we conducted field surveys in Kuala Lumpur, Malaysia, where a natural Wolbachia infection has also been reported. However, we were unable to detect Wolbachia in both the laboratory and field populations. Because the presence of naturally occurring Wolbachia in A. aegypti could have profound implications for Wolbachia ‐based disease control programs, it is important to continue to accurately assess the Wolbachia status of target Aedes populations.