School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 38
  • Item
    Thumbnail Image
    Functional Traits 2.0: The power of the metabolome for ecology
    Walker, TWN ; Alexander, JM ; Allard, P-M ; Baines, O ; Baldy, V ; Bardgett, RD ; Capdevila, P ; Coley, PD ; David, B ; Defossez, E ; Endara, M-J ; Ernst, M ; Fernandez, C ; Forrister, D ; Gargallo-Garriga, A ; Jassey, VEJ ; Marr, S ; Neumann, S ; Pellissier, L ; Penuelas, J ; Peters, K ; Rasmann, S ; Roessner, U ; Sardans, J ; Schrodt, F ; Schuman, MC ; Soule, A ; Uthe, H ; Weckwerth, W ; Wolfender, J-L ; van Dam, NM ; Salguero-Gomez, R (WILEY, 2022-01)
    Abstract A major aim of ecology is to upscale attributes of individuals to understand processes at population, community and ecosystem scales. Such attributes are typically described using functional traits, that is, standardised characteristics that impact fitness via effects on survival, growth and/or reproduction. However, commonly used functional traits (e.g. wood density, SLA) are becoming increasingly criticised for not being truly mechanistic and for being questionable predictors of ecological processes. This Special Feature reviews and studies how the metabolome (i.e. the thousands of unique metabolites that underpin physiology) can enhance trait‐based ecology and our understanding of plant and ecosystem functioning. In this Editorial, we explore how the metabolome relates to plant functional traits, with reference to life‐history trade‐offs governing fitness between generations and plasticity shaping fitness within generations. We also identify solutions to challenges of acquiring, interpreting and contextualising metabolome data, and propose a roadmap for integrating the metabolome into ecology. We next summarise the seven studies composing the Special Feature, which use the metabolome to examine mechanisms behind plant community assembly, plant‐organismal interactions and effects of plants and soil micro‐organisms on ecosystem processes. Synthesis. We demonstrate the potential of the metabolome to improve mechanistic and predictive power in ecology by providing a high‐resolution coupling between physiology and fitness. However, applying metabolomics to ecological questions is currently limited by a lack of conceptual, technical and data frameworks, which needs to be overcome to realise the full potential of the metabolome for ecology.
  • Item
    Thumbnail Image
    Plant Growth Promotion and Heat Stress Amelioration in Arabidopsis Inoculated with Paraburkholderia phytofirmans PsJN Rhizobacteria Quantified with the GrowScreen-Agar II Phenotyping Platform
    Macabuhay, A ; Arsova, B ; Watt, M ; Nagel, KA ; Lenz, H ; Putz, A ; Adels, S ; Mueller-Linow, M ; Kelm, J ; Johnson, AAT ; Walker, R ; Schaaf, G ; Roessner, U (MDPI, 2022-11)
    High temperatures inhibit plant growth. A proposed strategy for improving plant productivity under elevated temperatures is the use of plant growth-promoting rhizobacteria (PGPR). While the effects of PGPR on plant shoots have been extensively explored, roots-particularly their spatial and temporal dynamics-have been hard to study, due to their below-ground nature. Here, we characterized the time- and tissue-specific morphological changes in bacterized plants using a novel non-invasive high-resolution plant phenotyping and imaging platform-GrowScreen-Agar II. The platform uses custom-made agar plates, which allow air exchange to occur with the agar medium and enable the shoot to grow outside the compartment. The platform provides light protection to the roots, the exposure of it to the shoots, and the non-invasive phenotyping of both organs. Arabidopsis thaliana, co-cultivated with Paraburkholderia phytofirmans PsJN at elevated and ambient temperatures, showed increased lengths, growth rates, and numbers of roots. However, the magnitude and direction of the growth promotion varied depending on root type, timing, and temperature. The root length and distribution per depth and according to time was also influenced by bacterization and the temperature. The shoot biomass increased at the later stages under ambient temperature in the bacterized plants. The study offers insights into the timing of the tissue-specific, PsJN-induced morphological changes and should facilitate future molecular and biochemical studies on plant-microbe-environment interactions.
  • Item
    Thumbnail Image
    Root Growth and Architecture of Wheat and Brachypodium Vary in Response to Algal Fertilizer in Soil and Solution
    Mau, L ; Junker, S ; Bochmann, H ; Mihiret, YE ; Kelm, JM ; Schrey, SD ; Roessner, U ; Schaaf, G ; Watt, M ; Kant, J ; Arsova, B (MDPI, 2022-02)
    Alternative, recycled sources for mined phosphorus (P) fertilizers are needed to sustain future crop growth. Quantification of phenotypic adaptations and performance of plants with a recycled nutrient source is required to identify breeding targets and agronomy practices for new fertilization strategies. In this study, we tested the phenotypic responses of wheat (Triticum aestivum) and its genetic model, Brachypodium (Brachypodium distachyon), to dried algal biomass (with algae or high or low mineral P) under three growing conditions (fabricated ecosystems (EcoFABs), hydroponics, and sand). For both species, algal-grown plants had similar shoot biomass to mineral-grown plants, taking up more P than the low mineral P plants. Root phenotypes however were strongly influenced by nutrient form, especially in soilless conditions. Algae promoted the development of shorter and thicker roots, notably first and second order lateral roots. Root hairs were 21% shorter in Brachypodium, but 24% longer in wheat with algae compared to mineral high P. Our results are encouraging to new recycled fertilization strategies, showing algae is a nutrient source to wheat and Brachypodium. Variation in root phenotypes showed algal biomass is sensed by roots and is taken up at a higher amount per root length than mineral P. These phenotypes can be selected and further adapted in phenotype-based breeding for future renewal agriculture systems.
  • Item
    Thumbnail Image
    Editorial: Salinity tolerance: From model or wild plants to adapted crops
    Qiu, Q-S ; Melino, VJ ; Zhao, Z ; Qi, Z ; Sweetman, C ; Roessner, U (FRONTIERS MEDIA SA, 2022-07-27)
  • Item
    Thumbnail Image
    Biochemical Changes in Two Barley Genotypes Inoculated With a Beneficial Fungus Trichoderma harzianum Rifai T-22 Grown in Saline Soil
    Gupta, SVK ; Smith, PMC ; Natera, SHA ; Roessner, U (FRONTIERS MEDIA SA, 2022-08-02)
    One of the most important environmental factors impacting crop plant productivity is soil salinity. Fungal endophytes have been characterised as biocontrol agents that help in plant productivity and induce resistance responses to several abiotic stresses, including salinity. In the salt-tolerant cereal crop barley (Hordeum vulgare L.), there is limited information about the metabolites and lipids that change in response to inoculation with fungal endophytes in saline conditions. In this study, gas chromatography coupled to mass spectrometry (GC-MS) and LC-electrospray ionisation (ESI)-quadrupole-quadrupole time of flight (QqTOF)-MS were used to determine the metabolite and lipid changes in two fungal inoculated barley genotypes with differing tolerance levels to saline conditions. The more salt-tolerant cultivar was Vlamingh and less salt tolerant was Gairdner. Trichoderma harzianum strain T-22 was used to treat these plants grown in soil under control and saline (200 mM NaCl) conditions. For both genotypes, fungus-colonised plants exposed to NaCl had greater root and shoot biomass, and better chlorophyll content than non-colonised plants, with colonised-Vlamingh performing better than uninoculated control plants. The metabolome dataset using GC-MS consisted of a total of 93 metabolites of which 74 were identified in roots of both barley genotypes as organic acids, sugars, sugar acids, sugar alcohols, amino acids, amines, and a small number of fatty acids. LC-QqTOF-MS analysis resulted in the detection of 186 lipid molecular species, classified into three major lipid classes-glycerophospholipids, glycerolipids, and sphingolipids, from roots of both genotypes. In Cultivar Vlamingh both metabolites and lipids increased with fungus and salt treatment while in Gairdner they decreased. The results from this study suggest that the metabolic pathways by which the fungus imparts salt tolerance is different for the different genotypes.
  • Item
    Thumbnail Image
    Measures of insulin sensitivity, leptin, and adiponectin concentrations in cats in diabetic remission compared to healthy control cats
    Gottlieb, S ; Rand, JS ; Ishioka, K ; Dias, DA ; Boughton, BA ; Roessner, U ; Ramadan, Z ; Anderson, ST (FRONTIERS MEDIA SA, 2022-07-29)
    OBJECTIVES: Firstly, to compare differences in insulin, adiponectin, leptin, and measures of insulin sensitivity between diabetic cats in remission and healthy control cats, and determine whether these are predictors of diabetic relapse. Secondly, to determine if these hormones are associated with serum metabolites known to differ between groups. Thirdly, if any of the hormonal or identified metabolites are associated with measures of insulin sensitivity. ANIMALS: Twenty cats in diabetic remission for a median of 101 days, and 21 healthy matched control cats. METHODS: A casual blood glucose measured on admission to the clinic. Following a 24 h fast, a fasted blood glucose was measured, and blood sample taken for hormone (i.e., insulin, leptin, and adiponectin) and untargeted metabolomic (GC-MS and LC-MS) analysis. A simplified IVGGT (1 g glucose/kg) was performed 3 h later. Cats were monitored for diabetes relapse for at least 9 months (270 days). RESULTS: Cats in diabetic remission had significantly higher serum glucose and insulin concentrations, and decreased insulin sensitivity as indicated by an increase in HOMA and decrease in QUICKI and Bennett indices. Leptin was significantly increased, but there was no difference in adiponectin (or body condition score). Several significant correlations were found between insulin sensitivity indices, leptin, and serum metabolites identified as significantly different between remission and control cats. No metabolites were significantly correlated with adiponectin. No predictors of relapse were identified in this study. CONCLUSION AND CLINICAL IMPORTANCE: Insulin resistance, an underlying factor in diabetic cats, persists in diabetic remission. Cats in remission should be managed to avoid further exacerbating insulin resistance.
  • Item
    Thumbnail Image
    Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia (vol 13, 2614, 2022)
    Bassal, MA ; Samaraweera, SE ; Lim, K ; Benard, BA ; Bailey, S ; Kaur, S ; Leo, P ; Toubia, J ; Thompson-Peach, C ; Nguyen, T ; Maung, KZY ; Casolari, DA ; Iarossi, DG ; Pagani, IS ; Powell, J ; Pitson, S ; Natera, S ; Roessner, U ; Lewis, ID ; Brown, AL ; Tenen, DG ; Robinson, N ; Ross, DM ; Majeti, R ; Gonda, TJ ; Thomas, D ; D'Andrea, RJ (NATURE PORTFOLIO, 2022-07-15)
  • Item
    Thumbnail Image
    The Effect of Cold Stress on the Root-Specific Lipidome of Two Wheat Varieties with Contrasting Cold Tolerance
    Cheong, BE ; Yu, D ; Martinez-Seidel, F ; Ho, WWH ; Rupasinghe, TWT ; Dolferus, R ; Roessner, U (MDPI, 2022-05)
    Complex glycerolipidome analysis of wheat upon low temperature stress has been reported for above-ground tissues only. There are no reports on the effects of cold stress on the root lipidome nor on tissue-specific responses of cold stress wheat roots. This study aims to investigate the changes of lipid profiles in the different developmental zones of the seedling roots of two wheat varieties with contrasting cold tolerance exposed to chilling and freezing temperatures. We analyzed 273 lipid species derived from 21 lipid classes using a targeted profiling approach based on MS/MS data acquired from schedule parallel reaction monitoring assays. For both the tolerant Young and sensitive Wyalkatchem species, cold stress increased the phosphatidylcholine and phosphatidylethanolamine compositions, but decreased the monohexosyl ceramide compositions in the root zones. We show that the difference between the two varieties with contrasting cold tolerance could be attributed to the change in the individual lipid species, rather than the fluctuation of the whole lipid classes. The outcomes gained from this study may advance our understanding of the mechanisms of wheat adaptation to cold and contribute to wheat breeding for the improvement of cold-tolerance.
  • Item
    Thumbnail Image
    Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia
    Bassal, MA ; Samaraweera, SE ; Lim, K ; Bernard, BA ; Bailey, S ; Kaur, S ; Leo, P ; Toubia, J ; Thompson-Peach, C ; Nguyen, T ; Maung, KZY ; Casolari, DA ; Iarossi, DG ; Pagani, IS ; Powell, J ; Pitson, S ; Natera, S ; Roessner, U ; Lewis, ID ; Brown, AL ; Tenen, DG ; Robinson, N ; Ross, DM ; Majeti, R ; Gonda, TJ ; Thomas, D ; D'Andrea, RJ (NATURE PORTFOLIO, 2022-05-12)
    The interaction of germline variation and somatic cancer driver mutations is under-investigated. Here we describe the genomic mitochondrial landscape in adult acute myeloid leukaemia (AML) and show that rare variants affecting the nuclear- and mitochondrially-encoded complex I genes show near-mutual exclusivity with somatic driver mutations affecting isocitrate dehydrogenase 1 (IDH1), but not IDH2 suggesting a unique epistatic relationship. Whereas AML cells with rare complex I variants or mutations in IDH1 or IDH2 all display attenuated mitochondrial respiration, heightened sensitivity to complex I inhibitors including the clinical-grade inhibitor, IACS-010759, is observed only for IDH1-mutant AML. Furthermore, IDH1 mutant blasts that are resistant to the IDH1-mutant inhibitor, ivosidenib, retain sensitivity to complex I inhibition. We propose that the IDH1 mutation limits the flexibility for citrate utilization in the presence of impaired complex I activity to a degree that is not apparent in IDH2 mutant cells, exposing a mutation-specific metabolic vulnerability. This reduced metabolic plasticity explains the epistatic relationship between the germline complex I variants and oncogenic IDH1 mutation underscoring the utility of genomic data in revealing metabolic vulnerabilities with implications for therapy.
  • Item
    Thumbnail Image
    Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast
    Guo, Q ; Liu, L ; Rupasinghe, TWT ; Roessner, U ; Barkla, BJ (OXFORD UNIV PRESS INC, 2022-06-01)
    Plant cell membranes are the sites of sensing and initiation of rapid responses to changing environmental factors including salinity stress. Understanding the mechanisms involved in membrane remodeling is important for studying salt tolerance in plants. This task remains challenging in complex tissue due to suboptimal subcellular membrane isolation techniques. Here, we capitalized on the use of a surface charge-based separation method, free flow electrophoresis, to isolate the tonoplast (TP) and plasma membrane (PM) from leaf tissue of the halophyte ice plant (Mesembryanthemum crystallinum L.). Results demonstrated a membrane-specific lipidomic remodeling in this plant under salt conditions, including an increased proportion of bilayer forming lipid phosphatidylcholine in the TP and an increase in nonbilayer forming and negatively charged lipids (phosphatidylethanolamine and phosphatidylserine) in the PM. Quantitative proteomics showed salt-induced changes in proteins involved in fatty acid synthesis and desaturation, glycerolipid, and sterol synthesis, as well as proteins involved in lipid signaling, binding, and trafficking. These results reveal an essential plant mechanism for membrane homeostasis wherein lipidome remodeling in response to salt stress contributes to maintaining the physiological function of individual subcellular compartments.