School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Ia antigenic specificities are oligosaccharide in nature: hapten-inhibition studies.
    McKenzie, IF ; Clarke, A ; Parish, CR (Rockefeller University Press, 1977-04-01)
    We have previously reported that the Ia specificities, coded for by the I region within the H-2 complex, appear to consist predominantly of carbohydrate. This conclusion was reached by examining low molecular weight Ia-bearing oligosacharides isolated from mouse serum. We now report hapten-inhibition studies which indicate that the binding of both allogeneic and xenogeneic anti-Ia antibodies to the Ia glycoproteins found predominantly on B lymphocytes can be specifically inhibited by certain free sugars. Both inhibition assays revealed that the specificity for the following Ia antigens resides predominantly in the following sugars: (a) Ia.1: N-acetyl-D-mannosamine or related sugars; (b) Ia.3: alpha-D-galactose and related sugars; (c) Ia.7: L-fucose; and (d) Ia.15: N-acetyl-D-glucosamine. It seems likely that these sugars are found at the terminal nonreducing ends of the carbohydrate portion of the Ia-bearing glycoproteins present in the lymphocyte membrane. In contrast, several public and private H-2 antigenic specificities did not appear to be sugar defined. These studies imply that at least some of the Ia genes from both the I-A and I-C subregions of the I region code for glycosyl transferases which modify oligosaccharide structure and impart specificity to the Ia antigens by alteration of their terminal sugar residues.
  • Item
    Thumbnail Image
    On the mechanism of anaphase spindle elongation in Diatoma vulgare.
    McDonald, K ; Pickett-Heaps, JD ; McIntosh, JR ; Tippit, DH (Rockefeller University Press, 1977-08)
    Central spindles from five dividing cells (one metaphase, three anaphase, and one telophase) of Diatoma vulgare were reconstructed from serial sections. Each spindle is made up of two half-spindles that are composed almost entirely of polar microtubules. A small percentage of continuous microtubules and free microtubules were present in every stage except telophase. The half-spindles interdigitate at the midregion of the central spindle, forming a zone of overlap where the microtubules from one pole intermingle with those of the other. At metaphase the overlap zone is fairly extensive, but as elongation proceeds, the spindle poles move apart and the length of the overlap decreases because fewer microtubules are sufficiently long to reach from the pole to the zone of interdigitation. At telophase, only a few tubules are long enough to overlap at the midregion. Concurrent with the decrease in the length of the overlap zone is an increase in the staining density of the intermicrotubule matrix at the same region. These changes in morphology can most easily be explained by assuming zone mechanochemical interaction between microtubules in the overlap zone which results in a sliding apart of the two half-spindles.
  • Item
    Thumbnail Image
    Mitosis in the pennate diatom Surirella ovalis.
    Tippit, DH ; Pickett-Heaps, JD (Rockefeller University Press, 1977-06)
    Mitosis in Surirella is described; this organism displays a number of unusual features including an unorthodox method of chromosome attachment to the spindle, and the differentiation of an extranuclear central spindle from a large spherical organelle named the microtubule center (MC). The MC, present during interphase, breaks down at late prophase as the central spindle is formed. Later, the spindle enters the nucleus; the chromatin, in association with microtubules (MTs) from the poles, increasingly aggregates around the middle "overlap" region of the central spindle, and by metaphase completely encircles it. Throughout, MTs usually associate laterally with the chromatin. We were not able to identify kinetochore MTs with confidence at either metaphase or anaphase. Instead, at anaphase the leading point of the chromosomes is embedded in a ring of electron-dense material, named the "collar," which encircles each half spindle and extends from the chromatin to the pole. Anaphase separation of the chromosomes is achieved by at least three separate mechanisms: (a) between metaphase and late anaphase the central spindle increases in length by the addition of MT subunits; (b) at late anaphase the central spindle elongates concurrent with a reduction in the overlap; this apparently results from an MT/MT sliding mechanism; (c) each set of chromosomes moves to the poles by a thus far unknown mechanism; however, we anticipate some interaction of the collar and central spindle. At telophase, the polar complexes, (i.e., structures at the spindle pole) separate from the spindle, and later a new MC is formed near each polar complex, after which the polar complexes break down. Aspects of the complex differentiation of the MC, spindle formation, and some unusual characteristics of the diatom spindle as they relate to anaphase motion and spindle function are discussed.