School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Unique small RNA signatures uncovered in the tammar wallaby genome
    Lindsay, J ; Carone, DM ; Brown, J ; Hall, L ; Qureshi, S ; Mitchell, SE ; Jannetty, N ; Hannon, G ; Renfree, M ; Pask, A ; O'Neill, M ; O'Neill, R (BIOMED CENTRAL LTD, 2012-10-17)
    BACKGROUND: Small RNAs have proven to be essential regulatory molecules encoded within eukaryotic genomes. These short RNAs participate in a diverse array of cellular processes including gene regulation, chromatin dynamics and genome defense. The tammar wallaby, a marsupial mammal, is a powerful comparative model for studying the evolution of regulatory networks. As part of the genome sequencing initiative for the tammar, we have explored the evolution of each of the major classes of mammalian small RNAs in an Australian marsupial for the first time, including the first genome-scale analysis of the newest class of small RNAs, centromere repeat associated short interacting RNAs (crasiRNAs). RESULTS: Using next generation sequencing, we have characterized the major classes of small RNAs, micro (mi) RNAs, piwi interacting (pi) RNAs, and the centromere repeat associated short interacting (crasi) RNAs in the tammar. We examined each of these small RNA classes with respect to the newly assembled tammar wallaby genome for gene and repeat features, salient features that define their canonical sequences, and the constitution of both highly conserved and species-specific members. Using a combination of miRNA hairpin predictions and co-mapping with miRBase entries, we identified a highly conserved cluster of miRNA genes on the X chromosome in the tammar and a total of 94 other predicted miRNA producing genes. Mapping all miRNAs to the tammar genome and comparing target genes among tammar, mouse and human, we identified 163 conserved target genes. An additional nine genes were identified in tammar that do not have an orthologous miRNA target in human and likely represent novel miRNA-regulated genes in the tammar. A survey of the tammar gonadal piRNAs shows that these small RNAs are enriched in retroelements and carry members from both marsupial and tammar-specific repeat classes. Lastly, this study includes the first in-depth analyses of the newly discovered crasiRNAs. These small RNAs are derived largely from centromere-enriched retroelements, including a novel SINE. CONCLUSIONS: This study encompasses the first analyses of the major classes of small RNAs for the newly completed tammar genome, validates preliminary annotations using deep sequencing and computational approaches, and provides a foundation for future work on tammar-specific as well as conserved, but previously unknown small RNA progenitors and targets identified herein. The characterization of new miRNA target genes and a unique profile for crasiRNAs has allowed for insight into multiple RNA mediated processes in the tammar, including gene regulation, species incompatibilities, centromere and chromosome function.
  • Item
    Thumbnail Image
    Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger
    Menzies, BR ; Renfree, MB ; Heider, T ; Mayer, F ; Hildebrandt, TB ; Pask, AJ ; Orlando, L (PUBLIC LIBRARY SCIENCE, 2012-04-18)
    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago.
  • Item
    Thumbnail Image
    Promoter-Specific Expression and Imprint Status of Marsupial IGF2
    Stringer, JM ; Suzuki, S ; Pask, AJ ; Shaw, G ; Renfree, MB ; Thomas, T (PUBLIC LIBRARY SCIENCE, 2012-07-25)
    In mice and humans, IGF2 has multiple promoters to maintain its complex tissue- and developmental stage-specific imprinting and expression. IGF2 is also imprinted in marsupials, but little is known about its promoter region. In this study, three IGF2 transcripts were isolated from placental and liver samples of the tammar wallaby, Macropus eugenii. Each transcript contained a unique 5' untranslated region, orthologous to the non-coding exons derived from promoters P1-P3 in the human and mouse IGF2 locus. The expression of tammar IGF2 was predominantly from the P2 promoter, similar to humans. Expression of IGF2 was higher in pouch young than in the adult and imprinting was highly tissue and developmental-stage specific. Interestingly, while IGF2 was expressed throughout the placenta, imprinting seemed to be restricted to the vascular, trilaminar region. In addition, IGF2 was monoallelically expressed in the adult mammary gland while in the liver it switched from monoalleleic expression in the pouch young to biallelic in the adult. These data suggest a complex mode of IGF2 regulation in marsupials as seen in eutherian mammals. The conservation of the IGF2 promoters suggests they originated before the divergence of marsupials and eutherians, and have been selectively maintained for at least 160 million years.
  • Item
    Thumbnail Image
    Evolution of coding and non-coding genes in HOX clusters of a marsupial
    Yu, H ; Lindsay, J ; Feng, Z-P ; Frankenberg, S ; Hu, Y ; Carone, D ; Shaw, G ; Pask, AJ ; O'Neill, R ; Papenfuss, AT ; Renfree, MB (BMC, 2012-06-18)
    BACKGROUND: The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. RESULTS: Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. CONCLUSIONS: This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.
  • Item
    Thumbnail Image
    Selected imprinting of INS in the marsupial
    Stringer, JM ; Suzuki, S ; Pask, AJ ; Shaw, G ; Renfree, MB (BMC, 2012-08-28)
    BACKGROUND: In marsupials, growth and development of the young occur postnatally, regulated by milk that changes in composition throughout the long lactation. To initiate lactation in mammals, there is an absolute requirement for insulin (INS), a gene known to be imprinted in the placenta. We therefore examined whether INS is imprinted in the mammary gland of the marsupial tammar wallaby (Macropus eugenii) and compared its expression with that of insulin-like growth factor 2 (IGF2). RESULTS: INS was expressed in the mammary gland and significantly increased, while IGF2 decreased, during established milk production. Insulin and IGF2 were both detected in the mammary gland macrophage cells during early lactation and in the alveolar cells later in lactation. Surprisingly, INS, which was thought only to be imprinted in the therian yolk sac, was imprinted and paternally expressed in the liver of the developing young, monoallelically expressed in the tammar mammary gland and biallelic in the stomach and intestine. The INS transcription start site used in the liver and mammary gland was differentially methylated. CONCLUSIONS: This is the first study to identify tissue-specific INS imprinting outside the yolk sac. These data suggest that there may be an advantage of selective monoallelic expression in the mammary gland and that this may influence the growth of the postnatal young. These results are not consistent with the parental conflict hypothesis, but instead provide support for the maternal-infant co-adaptation hypothesis. Thus, imprinting in the mammary gland maybe as critical for postnatal growth and development in mammals as genomic imprinting in the placenta is prenatally.
  • Item
    Thumbnail Image
    HOXA13 and HOXD13 expression during development of the syndactylous digits in the marsupial Macropus eugenii
    Chew, KY ; Yu, H ; Pask, AJ ; Shaw, G ; Renfree, MB (BMC, 2012-01-11)
    BACKGROUND: Kangaroos and wallabies have specialised limbs that allow for their hopping mode of locomotion. The hindlimbs differentiate much later in development but become much larger than the forelimbs. The hindlimb autopod has only four digits, the fourth of which is greatly elongated, while digits two and three are syndactylous. We investigated the expression of two genes, HOXA13 and HOXD13, that are crucial for digit patterning in mice during formation of the limbs of the tammar wallaby. RESULTS: We describe the development of the tammar limbs at key stages before birth. There was marked heterochrony and the hindlimb developed more slowly than the forelimb. Both tammar HOXA13 and HOXD13 have two exons as in humans, mice and chickens. HOXA13 had an early and distal mRNA distribution in the tammar limb bud as in the mouse, but forelimb expression preceded that in the hindlimb. HOXD13 mRNA was expressed earlier in the forelimb than the hindlimb and was predominantly detected in the interdigital tissues of the forelimb. In contrast, the hindlimb had a more restricted expression pattern that appeared to be expressed at discrete points at both posterior and anterior margins of the limb bud, and was unlike expression seen in the mouse and the chicken. CONCLUSIONS: This is the first examination of HOXA and HOXD gene expression in a marsupial. The gene structure and predicted proteins were highly conserved with their eutherian orthologues. Interestingly, despite the morphological differences in hindlimb patterning, there were no modifications to the polyalanine tract of either HOXA13 or HOXD13 when compared to those of the mouse and bat but there was a marked difference between the tammar and the other mammals in the region of the first polyserine tract of HOXD13. There were also altered expression domains for both genes in the developing tammar limbs compared to the chicken and mouse. Together these findings suggest that the timing of HOX gene expression may contribute to the heterochrony of the forelimb and hindlimb and that alteration to HOX domains may influence phenotypic differences that lead to the development of marsupial syndactylous digits.