School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    Fungicides have transgenerational effects on Rhopalosiphum padi but not their endosymbionts
    Chirgwin, E ; Yang, Q ; Umina, PA ; Gill, A ; Soleimannejad, S ; Gu, X ; Ross, P ; Hoffmann, AA (JOHN WILEY & SONS LTD, 2022-11)
  • Item
    Thumbnail Image
    Wolbachia inhibits ovarian formation and increases blood feeding rate in female Aedes aegypti
    Lau, M-J ; Ross, PA ; Endersby-Harshman, NM ; Yang, Q ; Hoffmann, AA ; Bowen, RA (PUBLIC LIBRARY SCIENCE, 2022-11)
    Wolbachia, a gram-negative endosymbiotic bacterium widespread in arthropods, is well-known for changing the reproduction of its host in ways that increase its rate of spread, but there are also costs to hosts that can reduce this. Here we investigated a novel reproductive alteration of Wolbachia wAlbB on its host Aedes aegypti, using studies on mosquito life history traits, ovarian dissection, as well as gene expression assays. We found that an extended period of the larval stage as well as the egg stage (as previously shown) can increase the proportion of Wolbachia-infected females that become infertile; an effect which was not observed in uninfected females. Infertile females had incomplete ovarian formation and also showed a higher frequency of blood feeding following a prior blood meal, indicating that they do not enter a complete gonotrophic cycle. Treatments leading to infertility also decreased the expression of genes related to reproduction, especially the vitellogenin receptor gene whose product regulates the uptake of vitellogenin (Vg) into ovaries. Our results demonstrate effects associated with the development of infertility in wAlbB-infected Ae. aegypti females with implications for Wolbachia releases. The results also have implications for the evolution of Wolbachia infections in novel hosts.
  • Item
    Thumbnail Image
    Genome-wide SNPs of vegetable leafminer, Liriomyza sativae: Insights into the recent Australian invasion
    Xu, X ; Schmidt, TL ; Liang, J ; Ridland, PM ; Chung, J ; Yang, Q ; Jasper, ME ; Umina, PA ; Liu, W ; Hoffmann, AA (WILEY, 2022-07)
    Liriomyza sativae, the vegetable leafminer, is an important agricultural pest originally from the Americas, which has now colonized all continents except Antarctica. In 2015, L. sativae arrived on the Australian mainland and established on the Cape York Peninsula in the northeast of the country near the Torres Strait, which provides a possible pathway for pests to enter Australia and evade biosecurity efforts. Here, we assessed genetic variation in L. sativae based on genome-wide single nucleotide polymorphisms (SNPs) generated by double digest restriction-site-associated DNA sequencing (ddRAD-seq), aiming to uncover the potential origin(s) of this pest in Australia and contribute to reconstructing its global invasion history. Our fineRADstructure results and principal component analysis suggest Australian mainland populations were genetically close to populations from the Torres Strait, whereas populations from Asia, Africa, and Papua New Guinea (PNG) were more distantly related. Hawaiian populations were genetically distinct from all other populations of L. sativae included in our study. Admixture analyses further revealed that L. sativae from the Torres Strait may have genetic variation originating from multiple sources including Indonesia and PNG, and which has now spread to the Australian mainland. The L. sativae lineages from Asia and Africa appear closely related. Isolation-by-distance (IBD) was found at a broad global scale, but not within small regions, suggesting that human-mediated factors likely contribute to the local spread of this pest. Overall, our findings suggest that an exotic Liriomyza pest invaded Australia through the Indo-Papuan conduit, highlighting the importance of biosecurity programs aimed at restricting the movement of pests and diseases through this corridor.
  • Item
    Thumbnail Image
    A wMel Wolbachia variant in Aedes aegypti from field-collected Drosophila melanogaster with increased phenotypic stability under heat stress
    Gu, X ; Ross, PA ; Rodriguez-Andres, J ; Robinson, KL ; Yang, Q ; Lau, M-J ; Hoffmann, AA (WILEY, 2022-04)
    Mosquito-borne diseases remain a major cause of morbidity and mortality. Population replacement strategies involving the wMel strain of Wolbachia are being used widely to control mosquito-borne diseases. However, these strategies may be influenced by temperature because wMel is vulnerable to heat. wMel infections in Drosophila melanogaster are genetically diverse, but few transinfections of wMel variants have been generated in Aedes aegypti. Here, we successfully transferred a wMel variant (termed wMelM) originating from a field-collected D. melanogaster into Ae. aegypti. The new wMelM variant (clade I) is genetically distinct from the original wMel transinfection (clade III), and there are no genomic differences between wMelM in its original and transinfected host. We compared wMelM with wMel in its effects on host fitness, temperature tolerance, Wolbachia density, vector competence, cytoplasmic incompatibility and maternal transmission under heat stress in a controlled background. wMelM showed a higher heat tolerance than wMel, likely due to higher overall densities within the mosquito. Both wMel variants had minimal host fitness costs, complete cytoplasmic incompatibility and maternal transmission, and dengue virus blocking under laboratory conditions. Our results highlight phenotypic differences between Wolbachia variants and wMelM shows potential as an alternative strain in areas with strong seasonal temperature fluctuations.
  • Item
    Thumbnail Image
    Sex-specific distribution and classification of Wolbachia infections and mitochondrial DNA haplogroups in Aedes albopictus from the Indo-Pacific
    Yang, Q ; Chung, J ; Robinson, KL ; Schmidt, TL ; Ross, PA ; Liang, J ; Hoffmann, AA ; Kittayapong, P (PUBLIC LIBRARY SCIENCE, 2022-04)
    The arbovirus vector Aedes albopictus (Asian tiger mosquito) is common throughout the Indo-Pacific region, where most global dengue transmission occurs. We analysed population genomic data and tested for cryptic species in 160 Ae. albopictus sampled from 16 locations across this region. We found no evidence of cryptic Ae. albopictus but found multiple intraspecific COI haplotypes partitioned into groups representing three Asian lineages: East Asia, Southeast Asia and Indonesia. Papua New Guinea (PNG), Vanuatu and Christmas Island shared recent coancestry, and Indonesia and Timor-Leste were likely invaded from East Asia. We used a machine learning trained on morphologically sexed samples to classify sexes using multiple genetic features and then characterized the wAlbA and wAlbB Wolbachia infections in 664 other samples. The wAlbA and wAlbB infections as detected by qPCR showed markedly different patterns in the sexes. For females, most populations had a very high double infection incidence, with 67% being the lowest value (from Timor-Leste). For males, the incidence of double infections ranged from 100% (PNG) to 0% (Vanuatu). Only 6 females were infected solely by the wAlbA infection, while rare uninfected mosquitoes were found in both sexes. The wAlbA and wAlbB densities varied significantly among populations. For mosquitoes from Torres Strait and Vietnam, the wAlbB density was similar in single-infected and superinfected (wAlbA and wAlbB) mosquitoes. There was a positive association between wAlbA and wAlbB infection densities in superinfected Ae. albopictus. Our findings provide no evidence of cryptic species of Ae. albopictus in the region and suggest site-specific factors influencing the incidence of Wolbachia infections and their densities. We also demonstrate the usefulness of ddRAD tag depths as sex-specific mosquito markers. The results provide baseline data for the exploitation of Wolbachia-induced cytoplasmic incompatibility (CI) in dengue control.
  • Item
    Thumbnail Image
    A decade of stability for wMel Wolbachia in natural Aedes aegypti populations
    Ross, PP ; Robinson, KM ; Yang, Q ; Callahan, AA ; Schmidt, T ; Axford, J ; Coquilleau, MA ; Staunton, K ; Townsend, M ; Ritchie, S ; Lau, M-J ; Gu, X ; Hoffmann, A ; Dimopoulos, G (PUBLIC LIBRARY SCIENCE, 2022-02-23)
    Mosquitoes carrying Wolbachia endosymbionts are being released in many countries for arbovirus control. The wMel strain of Wolbachia blocks Aedes-borne virus transmission and can spread throughout mosquito populations by inducing cytoplasmic incompatibility. Aedes aegypti mosquitoes carrying wMel were first released into the field in Cairns, Australia, over a decade ago, and with wider releases have resulted in the near elimination of local dengue transmission. The long-term stability of Wolbachia effects is critical for ongoing disease suppression, requiring tracking of phenotypic and genomic changes in Wolbachia infections following releases. We used a combination of field surveys, phenotypic assessments, and Wolbachia genome sequencing to show that wMel has remained stable in its effects for up to a decade in Australian Ae. aegypti populations. Phenotypic comparisons of wMel-infected and uninfected mosquitoes from near-field and long-term laboratory populations suggest limited changes in the effects of wMel on mosquito fitness. Treating mosquitoes with antibiotics used to cure the wMel infection had limited effects on fitness in the next generation, supporting the use of tetracycline for generating uninfected mosquitoes without off-target effects. wMel has a temporally stable within-host density and continues to induce complete cytoplasmic incompatibility. A comparison of wMel genomes from pre-release (2010) and nine years post-release (2020) populations show few genomic differences and little divergence between release locations, consistent with the lack of phenotypic changes. These results indicate that releases of Wolbachia-infected mosquitoes for population replacement are likely to be effective for many years, but ongoing monitoring remains important to track potential evolutionary changes.
  • Item
    Thumbnail Image
    Spatial population genomics of a recent mosquito invasion
    Schmidt, TL ; Swan, T ; Chung, J ; Karl, S ; Demok, S ; Yang, Q ; Field, MA ; Muzari, MO ; Ehlers, G ; Brugh, M ; Bellwood, R ; Horne, P ; Burkot, TR ; Ritchie, S ; Hoffmann, AA (WILEY, 2021-03)
    Population genomic approaches can characterize dispersal across a single generation through to many generations in the past, bridging the gap between individual movement and intergenerational gene flow. These approaches are particularly useful when investigating dispersal in recently altered systems, where they provide a way of inferring long-distance dispersal between newly established populations and their interactions with existing populations. Human-mediated biological invasions represent such altered systems which can be investigated with appropriate study designs and analyses. Here we apply temporally restricted sampling and a range of population genomic approaches to investigate dispersal in a 2004 invasion of Aedes albopictus (the Asian tiger mosquito) in the Torres Strait Islands (TSI) of Australia. We sampled mosquitoes from 13 TSI villages simultaneously and genotyped 373 mosquitoes at genome-wide single nucleotide polymorphisms (SNPs): 331 from the TSI, 36 from Papua New Guinea (PNG) and four incursive mosquitoes detected in uninvaded regions. Within villages, spatial genetic structure varied substantially but overall displayed isolation by distance and a neighbourhood size of 232-577. Close kin dyads revealed recent movement between islands 31-203 km apart, and deep learning inferences showed incursive Ae. albopictus had travelled to uninvaded regions from both adjacent and nonadjacent islands. Private alleles and a co-ancestry matrix indicated direct gene flow from PNG into nearby islands. Outlier analyses also detected four linked alleles introgressed from PNG, with the alleles surrounding 12 resistance-associated cytochrome P450 genes. By treating dispersal as both an intergenerational process and a set of discrete events, we describe a highly interconnected invasive system.
  • Item
    Thumbnail Image
    Genetic stability of Aedes aegypti populations following invasion by wMel Wolbachia
    Lau, M-J ; Schmidt, TL ; Yang, Q ; Chung, J ; Sankey, L ; Ross, PA ; Hoffmann, AA (BMC, 2021-12-14)
    BACKGROUND: Wolbachia wMel is the most commonly used strain in rear and release strategies for Aedes aegypti mosquitoes that aim to inhibit the transmission of arboviruses such as dengue, Zika, Chikungunya and yellow fever. However, the long-term establishment of wMel in natural Ae. aegypti populations raises concerns that interactions between Wolbachia wMel and Ae. aegypti may lead to changes in the host genome, which could affect useful attributes of Wolbachia that allow it to invade and suppress disease transmission. RESULTS: We applied an evolve-and-resequence approach to study genome-wide genetic changes in Ae. aegypti from the Cairns region, Australia, where Wolbachia wMel was first introduced more than 10 years ago. Mosquito samples were collected at three different time points in Gordonvale, Australia, covering the phase before (2010) and after (2013 and 2018) Wolbachia releases. An additional three locations where Wolbachia replacement happened at different times across the last decade were also sampled in 2018. We found that the genomes of mosquito populations mostly remained stable after Wolbachia release, with population differences tending to reflect the geographic location of the populations rather than Wolbachia infection status. However, outlier analysis suggests that Wolbachia may have had an influence on some genes related to immune response, development, recognition and behavior. CONCLUSIONS: Ae. aegypti populations remained geographically distinct after Wolbachia wMel releases in North Australia despite their Wolbachia infection status. At some specific genomic loci, we found signs of selection associated with Wolbachia, suggesting potential evolutionary impacts can happen in the future and further monitoring is warranted.
  • Item
    Thumbnail Image
    The mitogenome of Halotydeus destructor (Tucker) and its relationships with other trombidiform mites as inferred from nucleotide sequences and gene arrangements
    Thia, JA ; Young, ND ; Korhnen, PK ; Yang, Q ; Gasser, RB ; Umina, PA ; Hoffmann, AA (WILEY, 2021-10)
    The redlegged earth mite, Halotydeus destructor (Tucker, 1925: Trombidiformes, Eupodoidea, Penthaleidae), is an invasive mite species. In Australia, this mite has become a pest of winter pastures and grain crops. We report the complete mitogenome for H. destructor, the first to represent the family Penthaleidae, superfamily Eupodoidea. The mitogenome of H. destructor is 14,691 bp in size, and has a GC content of 27.87%, 13 protein-coding genes, two rRNA genes, and 22 tRNA genes. We explored evolutionary relationships of H. destructor with other members of the Trombidiformes using phylogenetic analyses of nucleotide sequences and the order of protein-coding and rRNA genes. We found strong, consistent support for the superfamily Tydeoidea being the sister taxon to the superfamily Eupodoidea based on nucleotide sequences and gene arrangements. Moreover, the gene arrangements of Eupodoidea and Tydeoidea are not only identical to each other but also identical to that of the hypothesized arthropod ancestor, showing a high level of conservatism in the mitogenomic structure of these mite superfamilies. Our study illustrates the utility of gene arrangements for providing complementary information to nucleotide sequences with respect to inferring the evolutionary relationships of species within the order Trombidiformes. The mitogenome of H. destructor provides a valuable resource for further population genetic studies of this important agricultural pest. Given the co-occurrence of closely related, morphologically similar Penthaleidae mites with H. destructor in the field, a complete mitogenome provides new opportunities to develop metabarcoding tools to study mite diversity in agro-ecosystems. Moreover, the H. destructor mitogenome fills an important taxonomic gap that will facilitate further study of trombidiform mite evolution.
  • Item
    Thumbnail Image
    Origin of resistance to pyrethroids in the redlegged earth mite (Halotydeus destructor) in Australia: repeated local evolution and migration
    Yang, Q ; Umina, PA ; Rasic, G ; Bell, N ; Fang, J ; Lord, A ; Hoffmann, AA (JOHN WILEY & SONS LTD, 2020-02)