School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Estimating the true (population) infection rate for COVID-19: A Backcasting Approach with Monte Carlo Methods
    Phipps, S ; Grafton, Q ; Kompas, T ( 2020)


    Differences in COVID-19 testing and tracing across countries, as well as changes in testing within each country overtime, make it difficult to estimate the true (population) infection rate based on the confirmed number of cases obtained through RNA viral testing. We applied a backcasting approach, coupled with Monte Carlo methods, to estimate a distribution for the true (population) cumulative number of infections (infected and recovered) for 15 countries where reliable data are available. We find a positive relationship between the testing rate per 1,000 people and the implied true detection rate of COVID-19, and a negative relationship between the proportion who test positive and the implied true detection rate. Our estimates suggest that the true number of people infected across our sample of 15 developed countries is 18.2 (5-95% CI: 11.9-39.0) times greater than the reported number of cases. In individual countries, the true number of cases exceeds the reported figure by factors that range from 1.7 (5-95% CI: 1.1-3.6) for Australia to 35.6 (5-95% CI: 23.2-76.3) for Belgium.
  • Item
    Thumbnail Image
    Health and Economic Costs of Early, Delayed and No Suppression of COVID-19: The Case of Australia
    Kompas, T ; Grafton, Q ; Che, TN ; Chu, L ; Camac, J (Cold Spring Harbor Laboratory, 2020)
    We compare the health and economic costs of early (actual), delayed and no suppression of COVID-19 infections in 2020 in Australia. Using a fit-for-purpose compartment model that we fitted from recorded data, a value of a statistical life year (VSLY) and an age-adjusted value of statistical life (A-VSL), we find: (1) the economic costs of no suppression are multiples more than for early suppression; (2) VSLY welfare losses of fatalities equivalent to GDP losses mean that for early suppression to not to be the preferred strategy requires that Australians prefer more than 12,500–30,000 deaths to the economy costs of early suppression, depending on the fatality rate; and (3) early rather than delayed suppression imposes much lower economy and health costs. We conclude that in high-income countries, like Australia, a ‘go early, go hard’ strategy to suppress COVID-19 results in the lowest estimated public health and economy costs.