School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 1317
  • Item
    No Preview Available
    Gut microbiota in the short-beaked echidna (Tachyglossus Aculeatus) shows stability across gestation
    Buthgamuwa, I ; Fenelon, JC ; Roser, A ; Meer, H ; Johnston, SD ; Dungan, AM (Wiley, 2023-12)
    Indigenous gut microbial communities (microbiota) play critical roles in health and may be especially important for the mother and fetus during pregnancy. Monotremes, such as the short-beaked echidna, have evolved to lay and incubate an egg, which hatches in their pouch where the young feeds. Since both feces and eggs pass through the cloaca, the fecal microbiota of female echidnas provides an opportunity for vertical transmission of microbes to their offspring. Here, we characterize the gut/fecal microbiome of female short-beaked echidnas and gain a better understanding of the changes that may occur in their microbiome as they go through pregnancy. Fecal samples from four female and five male echidnas were obtained from the Currumbin Wildlife Sanctuary in Queensland and sequenced to evaluate bacterial community structure. We identified 25 core bacteria, most of which were present in male and female samples. Genera such as Fusobacterium, Bacteroides, Escherichia-Shigella, and Lactobacillus were consistently abundant, regardless of sex or gestation stage, accounting for 58.00% and 56.14% of reads in male and female samples, respectively. The echidna microbiome remained stable across the different gestation stages, though there was a significant difference in microbiota composition between male and female echidnas. This study is the first to describe the microbiome composition of short-beaked echidnas across reproductive phases and allows the opportunity for this novel information to be used as a metric of health to aid in the detection of diseases triggered by microbiota dysbiosis.
  • Item
    Thumbnail Image
    Ecomorphological correlates of inner ear shape in Australian limb-reduced skinks (Scincidae: Sphenomorphini)
    Camaiti, M ; Wiles, J ; Aguilar, R ; Hutchinson, MN ; Hipsley, CA ; Chapple, DG ; Evans, AR (OXFORD UNIV PRESS, 2023-12-01)
    Abstract The inner ear labyrinth is an organ able to perceive balance and spatial orientation, but the drivers of its morphological variation across and within vertebrate lineages are unclear. We assess two competing hypotheses whether this organ, and specifically the semicircular canals, modifies its shape as a functional adaptation to ecology and locomotion, or according to the constraints of skull morphology. We test these using 52 species of Australian sphenomorphines, a group of scincid lizards that evolved changes in body shape and locomotory adaptations to fossoriality multiple times independently, by reducing their limbs. We find a correlation between semicircular canal shape and degree of limb reduction in these lizards, supporting a functional hypothesis. The interaction between body shape and substrate ecology is also a significant predictor. The wider and more eccentric semicircular canals of limb-reduced skinks indicate higher balance sensitivity and manoeuvrability compared with fully limbed skinks, probably as an adaptation to navigating cluttered environments. Conversely, our results show only a minimal influence of skull constraints on semicircular canal shape, having instead significant effects on size. This supports the hypothesis that in these skinks inner ear shape evolution is driven by specific locomotory strategies more than it is constrained by cranial anatomy.
  • Item
    No Preview Available
    Plastid phylogenomics of the Eriostemon group (Rutaceae; Zanthoxyloideae): support for major clades and investigation of a backbone polytomy
    Orel, HK ; McLay, TGB ; Neal, WC ; Forster, PI ; Bayly, MJ ; Bruhl, J (CSIRO PUBLISHING, 2023)
    Most of Australia’s sclerophyllous Rutaceae belong to a clade informally known as the ‘Eriostemon group’ (including 16 genera, ~209 species). We investigated generic relationships in this group using analyses of complete plastome sequence data for 60 species and analyses of a supermatrix including sequences of four plastome spacer regions for 22 additional species. Maximum likelihood, Bayesian inference, and shortcut coalescent phylogenetic analyses produced congruent phylogenies that were highly supported, except for a series of short unsupported branches in the backbone of the Eriostemon group. We found high support for four major clades branching from this polytomy and discuss evolutionary inferences of generic relationships in each lineage. In an effort to resolve the polytomy, we analysed gene tree topologies in tree space, phylogenetic informativeness with likelihood mapping, and conducted topology tests to assess support for all possible topological resolutions of the polytomy. These approaches did not clarify the polytomy, which may be caused by insufficient data, features of plastome evolution, or rapid radiation. Results from analyses of the combined supermatrix dataset suggest that Philotheca section Philotheca is paraphyletic with regards to Drummondita and Geleznowia. In all phylogenies, Philotheca sections Corynonema and Cyanochlamys were not placed with other members of Philotheca.
  • Item
    Thumbnail Image
    Discovery of novel neutral glycosphingolipids in cereal crops: rapid profiling using reversed-phased HPLC-ESI-QqTOF with parallel reaction monitoring
    Yu, D ; Boughton, BA ; Rupasinghe, TWT ; Hill, CB ; Herrfurth, C ; Scholz, P ; Feussner, I ; Roessner, U (Nature Portfolio, 2023-12-19)
    This study explores the sphingolipid class of oligohexosylceramides (OHCs), a rarely studied group, in barley (Hordeum vulgare L.) through a new lipidomics approach. Profiling identified 45 OHCs in barley (Hordeum vulgare L.), elucidating their fatty acid (FA), long-chain base (LCB) and sugar residue compositions; and was accomplished by monophasic extraction followed by reverse-phased high performance liquid chromatography electrospray ionisation quadrupole-time-of-flight tandem mass spectrometry (HPLC-ESI-QqTOF-MS/MS) employing parallel reaction monitoring (PRM). Results revealed unknown ceramide species and highlighted distinctive FA and LCB compositions when compared to other sphingolipid classes. Structurally, the OHCs featured predominantly trihydroxy LCBs associated with hydroxylated FAs and oligohexosyl residues consisting of two-five glucose units in a linear 1 → 4 linkage. A survey found OHCs in tissues of major cereal crops while noting their absence in conventional dicot model plants. This study found salinity stress had only minor effects on the OHC profile in barley roots, leaving questions about their precise functions in plant biology unanswered.
  • Item
    Thumbnail Image
    DNA from non-viable bacteria biases diversity estimates in the corals Acropora loripes and Pocillopora acuta
    Dungan, AM ; Geissler, L ; Williams, AS ; Gotze, CR ; Flynn, EC ; Blackall, LL ; van Oppen, MJH (BMC, 2023-12-08)
    BACKGROUND: Nucleic acid-based analytical methods have greatly expanded our understanding of global prokaryotic diversity, yet standard metabarcoding methods provide no information on the most fundamental physiological state of bacteria, viability. Scleractinian corals harbour a complex microbiome in which bacterial symbionts play critical roles in maintaining health and functioning of the holobiont. However, the coral holobiont contains both dead and living bacteria. The former can be the result of corals feeding on bacteria, rapid swings from hyper- to hypoxic conditions in the coral tissue, the presence of antimicrobial compounds in coral mucus, and an abundance of lytic bacteriophages. RESULTS: By combining propidium monoazide (PMA) treatment with high-throughput sequencing on six coral species (Acropora loripes, A. millepora, A. kenti, Platygyra daedalea, Pocillopora acuta, and Porites lutea) we were able to obtain information on bacterial communities with little noise from non-viable microbial DNA. Metabarcoding of the 16S rRNA gene showed significantly higher community evenness (85%) and species diversity (31%) in untreated compared with PMA-treated tissue for A. loripes only. While PMA-treated coral did not differ significantly from untreated samples in terms of observed number of ASVs, > 30% of ASVs were identified in untreated samples only, suggesting that they originated from cell-free/non-viable DNA. Further, the bacterial community structure was significantly different between PMA-treated and untreated samples for A. loripes and P. acuta indicating that DNA from non-viable microbes can bias community composition data in coral species with low bacterial diversity. CONCLUSIONS: Our study is highly relevant to microbiome studies on coral and other host organisms as it delivers a solution to excluding non-viable DNA in a complex community. These results provide novel insights into the dynamic nature of host-associated microbiomes and underline the importance of applying versatile tools in the analysis of metabarcoding or next-generation sequencing data sets.
  • Item
    Thumbnail Image
    Disease-specific loss of microbial cross-feeding interactions in the human gut
    Marcelino, VR ; Welsh, C ; Diener, C ; Gulliver, EL ; Rutten, EL ; Young, RB ; Giles, EM ; Gibbons, SM ; Greening, C ; Forster, SC (NATURE PORTFOLIO, 2023-10-20)
    Many gut microorganisms critical to human health rely on nutrients produced by each other for survival; however, these cross-feeding interactions are still challenging to quantify and remain poorly characterized. Here, we introduce a Metabolite Exchange Score (MES) to quantify those interactions. Using metabolic models of prokaryotic metagenome-assembled genomes from over 1600 individuals, MES allows us to identify and rank metabolic interactions that are significantly affected by a loss of cross-feeding partners in 10 out of 11 diseases. When applied to a Crohn's disease case-control study, our approach identifies a lack of species with the ability to consume hydrogen sulfide as the main distinguishing microbiome feature of disease. We propose that our conceptual framework will help prioritize in-depth analyses, experiments and clinical targets, and that targeting the restoration of microbial cross-feeding interactions is a promising mechanism-informed strategy to reconstruct a healthy gut ecosystem.
  • Item
    Thumbnail Image
    Heat-evolved microalgal symbionts increase thermal bleaching tolerance of coral juveniles without a trade-off against growth
    Quigley, KM ; Alvarez-Roa, C ; Raina, J-B ; Pernice, M ; van Oppen, MJH (SPRINGER, 2023-12)
    Abstract Global climate change is threatening the persistence of coral reefs as associated summer heatwaves trigger the loss of microalgal endosymbionts (Symbiodiniaceae) from the coral tissues, or coral bleaching. We infected aposymbiotic juveniles of the coral Acropora tenuis with either wildtype (WT10) or heat-evolved (SS1 or SS8) Symbiodiniaceae strains Cladocopium proliferum (formerly referred to as Cladocopium goreaui and Cladocopium C1acro). After 10 months at 27 °C, SS8-juveniles were 2 × larger than SS1- or WT10-juveniles. In response to a simulated heatwave (31 °C for 41 days), the WT10-juveniles bleached and showed a decline in respiration while cell densities and respiration in both SS-juvenile groups remained unchanged compared to the controls. These results reveal that some heat-evolved strains can increase the bleaching tolerance of juvenile corals without a trade-off against growth. This response is opposite to the lower nutrient provisioning often reported for naturally thermotolerant Symbiodiniaceae (e.g. genus Durusdinium), thereby offering enhanced fitness to the host without the ecological consequences of diminished growth.
  • Item
    Thumbnail Image
    Inoculation with Roseovarius increases thermal tolerance of the coral photosymbiont, Breviolum minutum
    Heric, K ; Maire, J ; Deore, P ; Perez-Gonzalez, A ; van Oppen, MJH (FRONTIERS MEDIA SA, 2023-08-10)
    Coral reefs are diverse marine ecosystems that have tremendous ecological and cultural value and support more than 25% of eukaryote marine biodiversity. Increased ocean temperatures and light intensity trigger coral bleaching, the breakdown of the relationship between corals and their photosymbionts, dinoflagellates of the family Symbiodiniaceae. This leaves corals without their primary energy source, thereby leading to starvation and, often, death. Coral bleaching is hypothesized to occur due to an overproduction of reactive oxygen species (ROS) by Symbiodiniaceae, which subsequently accumulate in coral tissues. Bacterial probiotics have been proposed as an approach to mitigate coral bleaching, by reducing ROS levels in the coral holobiont through bacterial antioxidant production. Both corals and Symbiodiniaceae are known to associate with bacteria. However, the Symbiodiniaceae-bacteria relationship, and its impact on Symbiodiniaceae thermal tolerance, remains a poorly studied area. In this study, cultured Symbiodiniaceae of the species Breviolum minutum were treated with antibiotics to reduce their bacterial load. The cultures were subsequently inoculated with bacterial isolates from the genus Roseovarius that were isolated from the same B. minutum culture and showed either high or low ROS-scavenging abilities. The B. minutum cultures were then exposed to experimental heat stress for 16 days, and their health was monitored through measurements of cell density and photochemical efficiency of photosystem II. It was found that B. minutum inoculated with Roseovarius with higher ROS-scavenging abilities showed greater cell growth at elevated temperatures, compared to cultures inoculated with a Roseovarius strain with lower ROS-scavenging abilities. This suggests that Roseovarius may play a role in Symbiodiniaceae fitness at elevated temperatures. Analysis of Symbiodiniaceae-associated bacterial communities through 16S rRNA gene metabarcoding revealed that Roseovarius relative abundance increased in B. minutum cultures following inoculation and with elevated temperature exposure, highlighting the contribution they may have in shielding B. minutum from thermal stress, although other bacterial community changes may have also contributed to these observations. This study begins to unpick the relationship between Symbiodiniaceae and their bacteria and opens the door for the use of Symbiodiniaceae-associated bacteria in coral reef conservation approaches.
  • Item
    No Preview Available
    Functional potential and evolutionary response to long-term heat selection of bacterial associates of coral photosymbionts
    Maire, J ; Philip, GK ; Livingston, J ; Judd, LM ; Blackall, LL ; van Oppen, MJH ; Wilkins, LGE (AMER SOC MICROBIOLOGY, 2023-12-21)
    Symbiotic microorganisms are crucial for the survival of corals and their resistance to coral bleaching in the face of climate change. However, the impact of microbe-microbe interactions on coral functioning is mostly unknown but could be essential factors for coral adaption to future climates. Here, we investigated interactions between cultured dinoflagellates of the Symbiodiniaceae family, essential photosymbionts of corals, and associated bacteria. By assessing the genomic potential of 49 bacteria, we found that they are likely beneficial for Symbiodiniaceae, through the production of B vitamins and antioxidants. Additionally, bacterial genes involved in host-symbiont interactions, such as secretion systems, accumulated mutations following long-term exposure to heat, suggesting symbiotic interactions may change under climate change. This highlights the importance of microbe-microbe interactions in coral functioning.
  • Item
    No Preview Available
    The broccoli-derived antioxidant sulforaphane changes the growth of gastrointestinal microbiota, allowing for the production of anti-inflammatory metabolites
    Marshall, SA ; Young, RB ; Lewis, JM ; Rutten, EL ; Gould, J ; Barlow, CK ; Giogha, C ; Marcelino, VR ; Fields, N ; Schittenhelm, RB ; Hartland, EL ; Scott, NE ; Forster, SC ; Gulliver, EL (ELSEVIER, 2023-08)