Civil Engineering - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    No Preview Available
    Effect of land surface heterogeneity on satellite near-surface soil moisture observations
    Panciera, Rocco. (University of Melbourne, 2009)
    This thesis develops a technique to reduce the error in near-surface soil moisture estimates from spacebome passive microwave sensors, by accounting for the heterogeneity of land surface conditions within the sensor field of view. Using experimental data collected in the course of this research, it is demonstrated that this technique will significantly reduce the error in satellite near-surface soil moisture retrieval. The technique has been developed specifically for the first dedicated passive microwave soil moisture satellite, the European Soil Moisture and Ocean Salinity Mission (SMOS), which will use L-band (1.4GHz) measurements to map nearsurface soil moisture globally at a near-daily time scale. The main steps taken to develop these techniques are the first evaluation of the core radiative transfer model of the SMOS soil moisture retrieval algorithm for the Australian conditions using airborne data, and an analysis of the land surface controls on near-surface soil moisture distribution at the satellite footprint scale. These initial steps provided the tools in order to test the accuracy of the soil moisture retrieval approach proposed for SMOS at the satellite footprint scale in the presence of spatial variability of the land surface, and to develop a new retrieval approach for SMOS which overcomes the shortfalls identified in the SMOS proposed approach.