General Practice - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Identifying primary care datasets and perspectives on their secondary use: a survey of Australian data users and custodians
    Canaway, R ; Boyle, D ; Manski-Nankervis, J-A ; Gray, K (BMC, 2022-04-06)
    BACKGROUND: Most people receive most of their health care in in Australia in primary care, yet researchers and policymakers have limited access to resulting clinical data. Widening access to primary care data and linking it with hospital or other data can contribute to research informing policy and provision of services and care; however, limitations of primary care data and barriers to access curtail its use. The Australian Health Research Alliance (AHRA) is seeking to build capacity in data-driven healthcare improvement; this study formed part of its workplan. METHODS: The study aimed to build capacity for data driven healthcare improvement through identifying primary care datasets in Australia available for secondary use and understand data quality frameworks being applied to them, and factors affecting national capacity for secondary use of primary care data from the perspectives of data custodians and users. Purposive and snowball sampling were used to disseminate a questionnaire and respondents were invited to contribute additional information via semi-structured interviews. RESULTS: Sixty-two respondents collectively named 106 datasets from eclectic sources, indicating a broad conceptualisation of what a primary care dataset available for secondary use is. The datasets were generated from multiple clinical software systems, using different data extraction tools, resulting in non-standardised data structures. Use of non-standard data quality frameworks were described by two-thirds of data custodians. Building trust between citizens, clinicians, third party data custodians and data end-users was considered by many to be a key enabler to improve primary care data quality and efficiencies related to secondary use. Trust building qualities included meaningful stakeholder engagement, transparency, strong leadership, shared vision, robust data security and data privacy protection. Resources to improve capacity for primary care data access and use were sought for data collection tool improvements, workforce upskilling and education, incentivising data collection and making data access more affordable. CONCLUSIONS: The large number of identified Australian primary care related datasets suggests duplication of labour related to data collection, preparation and utilisation. Benefits of secondary use of primary care data were many, and strong national leadership is required to reach consensus on how to address limitations and barriers, for example accreditation of EMR clinical software systems and the adoption of agreed data and quality standards at all stages of the clinical and research data-use lifecycle. The study informed the workplan of AHRA's Transformational Data Collaboration to improve partner engagement and use of clinical data for research.
  • Item
    Thumbnail Image
    Improving a Secondary Use Health Data Warehouse: Proposing a Multi-Level Data Quality Framework
    Henley-Smith, S ; Boyle, D ; Gray, K (Ubiquity Press, Ltd., 2019-08-02)
    Background: Data quality frameworks within information technology and recently within health care have evolved considerably since their inception. When assessing data quality for secondary uses, an area not yet addressed adequately in these frameworks is the context of the intended use of the data. Methods: After review of literature to identify relevant research, an existing data quality framework was refined and expanded to encompass the contextual requirements not present. Results: The result is a two-level framework to address the need to maintain the intrinsic value of the data, as well as the need to indicate whether the data will be able to provide the basis for answers in specific areas of interest or questions. Discussion: Data quality frameworks have always been one dimensional, requiring the implementers of these frameworks to fit the requirements of the data’s use around how the framework is designed to function. Our work has systematically addressed the shortcomings of existing frameworks, through the application of concepts synthesized from the literature to the naturalistic setting of data quality management in an actual health data warehouse. Conclusion: Secondary use of health data relies on contextualized data quality management. Our work is innovative in showing how to apply context around data quality characteristics and how to develop a second level data quality framework, so as to ensure that quality and context are maintained and addressed throughout the health data quality assessment process.