General Practice - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Identifying primary care datasets and perspectives on their secondary use: a survey of Australian data users and custodians
    Canaway, R ; Boyle, D ; Manski-Nankervis, J-A ; Gray, K (BMC, 2022-04-06)
    BACKGROUND: Most people receive most of their health care in in Australia in primary care, yet researchers and policymakers have limited access to resulting clinical data. Widening access to primary care data and linking it with hospital or other data can contribute to research informing policy and provision of services and care; however, limitations of primary care data and barriers to access curtail its use. The Australian Health Research Alliance (AHRA) is seeking to build capacity in data-driven healthcare improvement; this study formed part of its workplan. METHODS: The study aimed to build capacity for data driven healthcare improvement through identifying primary care datasets in Australia available for secondary use and understand data quality frameworks being applied to them, and factors affecting national capacity for secondary use of primary care data from the perspectives of data custodians and users. Purposive and snowball sampling were used to disseminate a questionnaire and respondents were invited to contribute additional information via semi-structured interviews. RESULTS: Sixty-two respondents collectively named 106 datasets from eclectic sources, indicating a broad conceptualisation of what a primary care dataset available for secondary use is. The datasets were generated from multiple clinical software systems, using different data extraction tools, resulting in non-standardised data structures. Use of non-standard data quality frameworks were described by two-thirds of data custodians. Building trust between citizens, clinicians, third party data custodians and data end-users was considered by many to be a key enabler to improve primary care data quality and efficiencies related to secondary use. Trust building qualities included meaningful stakeholder engagement, transparency, strong leadership, shared vision, robust data security and data privacy protection. Resources to improve capacity for primary care data access and use were sought for data collection tool improvements, workforce upskilling and education, incentivising data collection and making data access more affordable. CONCLUSIONS: The large number of identified Australian primary care related datasets suggests duplication of labour related to data collection, preparation and utilisation. Benefits of secondary use of primary care data were many, and strong national leadership is required to reach consensus on how to address limitations and barriers, for example accreditation of EMR clinical software systems and the adoption of agreed data and quality standards at all stages of the clinical and research data-use lifecycle. The study informed the workplan of AHRA's Transformational Data Collaboration to improve partner engagement and use of clinical data for research.
  • Item
    No Preview Available
    Rapid Design and Delivery of an Experience-Based Co-designed Mobile App to Support the Mental Health Needs of Health Care Workers Affected by the COVID-19 Pandemic: Impact Evaluation Protocol (Preprint)
    Lewis, M ; Palmer, VJ ; Kotevski, A ; Densley, K ; O'Donnell, ML ; Johnson, C ; Wohlgezogen, F ; Gray, K ; Robins-Browne, K ; Burchill, L (JMIR Publications, 2020-12-02)
    BACKGROUND

    The COVID-19 pandemic has highlighted the importance of health care workers’ mental health and well-being for the successful function of the health care system. Few targeted digital tools exist to support the mental health of hospital-based health care workers, and none of them appear to have been led and co-designed by health care workers.

    OBJECTIVE

    RMHive is being led and developed by health care workers using experience-based co-design (EBCD) processes as a mobile app to support the mental health challenges posed by the COVID-19 pandemic to health care workers. We present a protocol for the impact evaluation for the rapid design and delivery of the RMHive mobile app.

    METHODS

    The impact evaluation will adopt a mixed methods design. Qualitative data from photo interviews undertaken with up to 30 health care workers and semistructured interviews conducted with up to 30 governance stakeholders will be integrated with qualitative and quantitative user analytics data and user-generated demographic and mental health data entered into the app. Analyses will address three evaluation questions related to engagement with the mobile app, implementation and integration of the app, and the impact of the app on individual mental health outcomes. The design and development will be described using the Mobile Health Evidence Reporting and Assessment guidelines. Implementation of the app will be evaluated using normalization process theory to analyze qualitative data from interviews combined with text and video analysis from the semistructured interviews. Mental health impacts will be assessed using the total score of the 4-item Patient Health Questionnaire (PHQ4) and subscale scores for the 2-item Patient Health Questionnaire for depression and the 2-item Generalized Anxiety Scale for anxiety. The PHQ4 will be completed at baseline and at 14 and 28 days.

    RESULTS

    The anticipated average use period of the app is 30 days. The rapid design will occur over four months using EBCD to collect qualitative data and develop app content. The impact evaluation will monitor outcome data for up to 12 weeks following hospital-wide release of the minimal viable product release. The study received funding and ethics approvals in June 2020. Outcome data is expected to be available in March 2021, and the impact evaluation is expected to be published mid-2021.

    CONCLUSIONS

    The impact evaluation will examine the rapid design, development, and implementation of the RMHive app and its impact on mental health outcomes for health care workers. Findings from the impact evaluation will provide guidance for the integration of EBCD in rapid design and implementation processes. The evaluation will also inform future development and rollout of the app to support the mental health needs of hospital-based health care workers more widely.

    INTERNATIONAL REGISTERED REPORT

    DERR1-10.2196/26168

  • Item
    Thumbnail Image
    Rapid Design and Delivery of an Experience-Based Co-designed Mobile App to Support the Mental Health Needs of Health Care Workers Affected by the COVID-19 Pandemic: Impact Evaluation Protocol
    Lewis, M ; Palmer, VJ ; Kotevski, A ; Densley, K ; O'Donnell, ML ; Johnson, C ; Wohlgezogen, F ; Gray, K ; Robins-Browne, K ; Burchill, L (JMIR PUBLICATIONS, INC, 2021-03-01)
    BACKGROUND: The COVID-19 pandemic has highlighted the importance of health care workers' mental health and well-being for the successful function of the health care system. Few targeted digital tools exist to support the mental health of hospital-based health care workers, and none of them appear to have been led and co-designed by health care workers. OBJECTIVE: RMHive is being led and developed by health care workers using experience-based co-design (EBCD) processes as a mobile app to support the mental health challenges posed by the COVID-19 pandemic to health care workers. We present a protocol for the impact evaluation for the rapid design and delivery of the RMHive mobile app. METHODS: The impact evaluation will adopt a mixed methods design. Qualitative data from photo interviews undertaken with up to 30 health care workers and semistructured interviews conducted with up to 30 governance stakeholders will be integrated with qualitative and quantitative user analytics data and user-generated demographic and mental health data entered into the app. Analyses will address three evaluation questions related to engagement with the mobile app, implementation and integration of the app, and the impact of the app on individual mental health outcomes. The design and development will be described using the Mobile Health Evidence Reporting and Assessment guidelines. Implementation of the app will be evaluated using normalization process theory to analyze qualitative data from interviews combined with text and video analysis from the semistructured interviews. Mental health impacts will be assessed using the total score of the 4-item Patient Health Questionnaire (PHQ4) and subscale scores for the 2-item Patient Health Questionnaire for depression and the 2-item Generalized Anxiety Scale for anxiety. The PHQ4 will be completed at baseline and at 14 and 28 days. RESULTS: The anticipated average use period of the app is 30 days. The rapid design will occur over four months using EBCD to collect qualitative data and develop app content. The impact evaluation will monitor outcome data for up to 12 weeks following hospital-wide release of the minimal viable product release. The study received funding and ethics approvals in June 2020. Outcome data is expected to be available in March 2021, and the impact evaluation is expected to be published mid-2021. CONCLUSIONS: The impact evaluation will examine the rapid design, development, and implementation of the RMHive app and its impact on mental health outcomes for health care workers. Findings from the impact evaluation will provide guidance for the integration of EBCD in rapid design and implementation processes. The evaluation will also inform future development and rollout of the app to support the mental health needs of hospital-based health care workers more widely. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/26168.