Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Meta-analysis reveals associations between genetic variation in the 5′ and 3′regions of Neuregulin-1 and schizophrenia
    Mostaid, MS ; Mancuso, SG ; Liu, C ; Sundram, S ; Pantelis, C ; Everall, IP ; Bousman, CA (SPRINGERNATURE, 2017-01-17)
    Genetic, post-mortem and neuroimaging studies repeatedly implicate neuregulin-1 (NRG1) as a critical component in the pathophysiology of schizophrenia. Although a number of risk haplotypes along with several genetic polymorphisms in the 5' and 3' regions of NRG1 have been linked with schizophrenia, results have been mixed. To reconcile these conflicting findings, we conducted a meta-analysis examining 22 polymorphisms and two haplotypes in NRG1 among 16 720 cases, 20 449 controls and 2157 family trios. We found significant associations for three polymorphisms (rs62510682, rs35753505 and 478B14-848) at the 5'-end and two (rs2954041 and rs10503929) near the 3'-end of NRG1. Population stratification effects were found for the rs35753505 and 478B14-848(4) polymorphisms. There was evidence of heterogeneity for all significant markers and the findings were robust to publication bias. No significant haplotype associations were found. Our results suggest genetic variation at the 5' and 3' ends of NRG1 are associated with schizophrenia and provide renewed justification for further investigation of NRG1's role in the pathophysiology of schizophrenia.
  • Item
    Thumbnail Image
    Meta-analysis supports GWAS-implicated link between GRM3 and schizophrenia risk
    Saini, SM ; Mancuso, SG ; Mostaid, MS ; Liu, C ; Pantelis, C ; Everall, IP ; Bousman, CA (SPRINGERNATURE, 2017-08-08)
    Genome-wide association study (GWAS) evidence has identified the metabotropic glutamate receptor 3 (GRM3) gene as a potential harbor for schizophrenia risk variants. However, previous meta-analyses have refuted the association between GRM3 single-nucleotide polymorphisms (SNPs) and schizophrenia risk. To reconcile these conflicting findings, we conducted the largest and most comprehensive meta-analysis of 14 SNPs in GRM3 from a total of 11 318 schizophrenia cases, 13 820 controls and 486 parent-proband trios. We found significant associations for three SNPs (rs2237562: odds ratio (OR)=1.06, 95% confidence interval (CI)=1.02-1.11, P=0.017; rs13242038: OR=0.90, 95% CI=0.85-0.96, P=0.016 and rs917071: OR=0.94, 95% CI=0.91-0.97, P=0.003). Two of these SNPs (rs2237562, rs917071) were in strong-to-moderate linkage disequilibrium with the top GRM3 GWAS significant SNP (rs12704290) reported by the Schizophrenia Working Group of the Psychiatric Genomics Consortium. We also found evidence for population stratification related to rs2237562 in that the 'risk' allele was dependent on the population under study. Our findings support the GWAS-implicated link between GRM3 genetic variation and schizophrenia risk as well as the notion that alleles conferring this risk may be population specific.
  • Item
    Thumbnail Image
    The schizophrenia genetics knowledgebase: a comprehensive update of findings from candidate gene studies
    Liu, C ; Kanazawa, T ; Tian, Y ; Saini, SM ; Mancuso, S ; Mostaid, MS ; Takahashi, A ; Zhang, D ; Zhang, F ; Yu, H ; Shin, HD ; Cheong, HS ; Ikeda, M ; Kubo, M ; Iwata, N ; Woo, S-I ; Yue, W ; Kamatani, Y ; Shi, Y ; Li, Z ; Everall, I ; Pantelis, C ; Bousman, C (NATURE PUBLISHING GROUP, 2019-08-27)
    Over 3000 candidate gene association studies have been performed to elucidate the genetic underpinnings of schizophrenia. However, a comprehensive evaluation of these studies' findings has not been undertaken since the decommissioning of the schizophrenia gene (SzGene) database in 2011. As such, we systematically identified and carried out random-effects meta-analyses for all polymorphisms with four or more independent studies in schizophrenia along with a series of expanded meta-analyses incorporating published and unpublished genome-wide association (GWA) study data. Based on 550 meta-analyses, 11 SNPs in eight linkage disequilibrium (LD) independent loci showed Bonferroni-significant associations with schizophrenia. Expanded meta-analyses identified an additional 10 SNPs, for a total of 21 Bonferroni-significant SNPs in 14 LD-independent loci. Three of these loci (MTHFR, DAOA, ARVCF) had never been implicated by a schizophrenia GWA study. In sum, the present study has provided a comprehensive summary of the current schizophrenia genetics knowledgebase and has made available all the collected data as a resource for the research community.
  • Item
    Thumbnail Image
    Elevated ubiquitinated proteins in brain and blood of individuals with schizophrenia
    Bousman, CA ; Luza, S ; Mancuso, SG ; Kang, D ; Opazo, CM ; Mostaid, MS ; Cropley, V ; McGorry, P ; Weickert, CS ; Pantelis, C ; Bush, AI ; Everall, IP (NATURE PORTFOLIO, 2019-02-19)
    Dysregulation of the ubiquitin proteasome system (UPS) has been linked to schizophrenia but it is not clear if this dysregulation is detectable in both brain and blood. We examined free mono-ubiquitin, ubiquitinated proteins, catalytic ubiquitination, and proteasome activities in frozen postmortem OFC tissue from 76 (38 schizophrenia, 38 control) matched individuals, as well as erythrocytes from 181 living participants, who comprised 30 individuals with recent onset schizophrenia (mean illness duration = 1 year), 63 individuals with 'treatment-resistant' schizophrenia (mean illness duration = 17 years), and 88 age-matched participants without major psychiatric illness. Ubiquitinated protein levels were elevated in postmortem OFC in schizophrenia compared to controls (p = <0.001, AUC = 74.2%). Similarly, individuals with 'treatment-resistant' schizophrenia had higher levels of ubiquitinated proteins in erythrocytes compared to those with recent onset schizophrenia (p < 0.001, AUC = 65.5%) and controls (p < 0.001, AUC = 69.4%). The results could not be better explained by changes in proteasome activity, demographic, medication, or tissue factors. Our results suggest that ubiquitinated protein formation may be abnormal in both the brain and erythrocytes of those with schizophrenia, particularly in the later stages or specific sub-groups of the illness. A derangement in protein ubiquitination may be linked to pathogenesis or neurotoxicity in schizophrenia, and its manifestation in the blood may have prognostic utility.