Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    O2.3. ABNORMAL BRAIN AGING IN YOUTH WITH SUBCLINICAL PSYCHOSIS AND OBSESSIVE-COMPULSIVE SYMPTOMS
    Cropley, V ; Tian, Y ; Fernando, K ; Mansour, S ; Pantelis, C ; Cocchi, L ; Zalesky, A (Oxford University Press (OUP), 2020-05-18)
    Abstract Background Psychiatric symptoms in childhood and adolescence have been associated with both delayed and accelerated patterns of grey matter development. This suggests that deviation in brain structure from a normative range of variation for a given age might be important in the emergence of psychopathology. Distinct from chronological age, brain age refers to the age of an individual that is inferred from a normative model of brain structure for individuals of the same age and sex. We predicted brain age from a common set of grey matter features and examined whether the difference between an individual’s chronological and brain age was associated with the severity of psychopathology in children and adolescents. Methods Participants included 1313 youths (49.8% male) aged 8–21 who underwent structural imaging as part of the Philadelphia Neurodevelopmental Cohort. Independent Component Analysis was used to obtain 7 psychopathology dimensions representing Conduct, Anxiety, Obsessive-Compulsive, Attention, Depression, Bipolar, and Psychosis symptoms and an overall measure of severity (General Psychopathology). Using 10-fold cross-validation, support vector machine regression was trained in 402 typically developing youth to predict individual age based on a feature space comprising 111 grey matter regions. This yielded a brain age prediction for each individual. Brain age gap was calculated for each individual by subtracting chronological age from predicted brain age. The general linear model was used to test for an association between brain age gap and each of the 8 dimensions of psychopathology in a test sample of 911 youth. The regional specificity and spatial pattern of brain age gap was also investigated. Error control across the 8 models was achieved with a false discovery rate of 5%. Results Brain age gap was significantly associated with dimensions characterizing obsessive-compulsive (t=2.5, p=0.01), psychosis (t=3.16, p=0.0016) and general psychopathology (t=4.08, p<0.0001). For all three dimensions, brain age gap was positively associated with symptom severity, indicating that individuals with a brain that was predicted to be ‘older’ than expectations set by youth of the same chronological age and sex tended to have higher symptom scores. Findings were confirmed with a categorical approach, whereby higher brain age gap was observed in youth with a lifetime endorsement of psychosis (t=2.35, p=0.02) and obsessive-compulsive (t=2.35, p=0.021) symptoms, in comparison to typically developing individuals. Supplementary analyses revealed that frontal grey matter was the most important feature mediating the association between brain age gap and psychosis symptoms, whereas subcortical volumes were most important for the association between brain age gap and obsessive-compulsive and general symptoms. Discussion We found that the brain was ‘older’ in youth experiencing higher subclinical symptoms of psychosis, obsession-compulsion, and general psychopathology, compared to normally developing youth of the same chronological age. Our results suggest that deviations in normative brain age patterns in youth may contribute to the manifestation of specific psychiatric symptoms of subclinical severity that cut across psychopathology dimensions.
  • Item
    Thumbnail Image
    Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort
    Lv, J ; Di Biase, M ; Cash, RFH ; Cocchi, L ; Cropley, VL ; Klauser, P ; Tian, Y ; Bayer, J ; Schmaal, L ; Cetin-Karayumak, S ; Rathi, Y ; Pasternak, O ; Bousman, C ; Pantelis, C ; Calamante, F ; Zalesky, A (SPRINGERNATURE, 2021-07)
    The heterogeneity of schizophrenia has defied efforts to derive reproducible and definitive anatomical maps of structural brain changes associated with the disorder. We aimed to map deviations from normative ranges of brain structure for individual patients and evaluate whether the loci of individual deviations recapitulated group-average brain maps of schizophrenia pathology. For each of 48 white matter tracts and 68 cortical regions, normative percentiles of variation in fractional anisotropy (FA) and cortical thickness (CT) were established using diffusion-weighted and structural MRI from healthy adults (n = 195). Individuals with schizophrenia (n = 322) were classified as either within the normative range for healthy individuals of the same age and sex (5-95% percentiles), infra-normal (<5% percentile) or supra-normal (>95% percentile). Repeating this classification for each tract and region yielded a deviation map for each individual. Compared to the healthy comparison group, the schizophrenia group showed widespread reductions in FA and CT, involving virtually all white matter tracts and cortical regions. Paradoxically, however, no more than 15-20% of patients deviated from the normative range for any single tract or region. Furthermore, 79% of patients showed infra-normal deviations for at least one locus (healthy individuals: 59 ± 2%, p < 0.001). Thus, while infra-normal deviations were common among patients, their anatomical loci were highly inconsistent between individuals. Higher polygenic risk for schizophrenia associated with a greater number of regions with infra-normal deviations in CT (r = -0.17, p = 0.006). We conclude that anatomical loci of schizophrenia-related changes are highly heterogeneous across individuals to the extent that group-consensus pathological maps are not representative of most individual patients. Normative modeling can aid in parsing schizophrenia heterogeneity and guiding personalized interventions.