Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Peripheral Transcription of NRG-ErbB Pathway Genes Are Upregulated in Treatment-Resistant Schizophrenia
    Mostaid, MS ; Lee, TT ; Chana, G ; Sundram, S ; Weickert, CS ; Pantelis, C ; Everall, I ; Bousman, C (FRONTIERS MEDIA SA, 2017-11-06)
    Investigation of peripheral gene expression patterns of transcripts within the NRG-ErbB signaling pathway, other than neuregulin-1 (NRG1), among patients with schizophrenia and more specifically treatment-resistant schizophrenia (TRS) is limited. The present study built on our previous work demonstrating elevated levels of NRG1 EGFα, EGFβ, and type I(Ig2) containing transcripts in TRS by investigating 11 NRG-ErbB signaling pathway mRNA transcripts (NRG2, ErbB1, ErbB2, ErbB3, ErbB4, PIK3CD, PIK3R3, AKT1, mTOR, P70S6K, eIF4EBP1) in whole blood of TRS patients (N = 71) and healthy controls (N = 57). We also examined the effect of clozapine exposure on transcript levels using cultured peripheral blood mononuclear cells (PBMCs) from 15 healthy individuals. Five transcripts (ErbB3, PIK3CD, AKT1, P70S6K, eIF4EBP1) were significantly elevated in TRS patients compared to healthy controls but only expression of P70S6K (Pcorrected = 0.018), a protein kinase linked to protein synthesis, cell growth, and cell proliferation, survived correction for multiple testing using the Benjamini-Hochberg method. Investigation of clinical factors revealed that ErbB2, PIK3CD, PIK3R3, AKT1, mTOR, and P70S6K expression were negatively correlated with duration of illness. However, no transcript was associated with chlorpromazine equivalent dose or clozapine plasma levels, the latter supported by our in vitro PBMC clozapine exposure experiment. Taken together with previously published NRG1 results, our findings suggest an overall upregulation of transcripts within the NRG-ErbB signaling pathway among individuals with schizophrenia some of which attenuate over duration of illness. Follow-up studies are needed to determine if the observed peripheral upregulation of transcripts within the NRG-ErbB signaling pathway are specific to TRS or are a general blood-based marker of schizophrenia.
  • Item
    Thumbnail Image
    Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis
    Chana, G ; Bousman, CA ; Money, TT ; Gibbons, A ; Gillett, P ; Dean, B ; Everall, IP (FRONTIERS MEDIA SA, 2013-06-26)
    Post-mortem brain investigations of schizophrenia have generated swathes of data in the last few decades implicating candidate genes and protein. However, the relation of these findings to peripheral biomarker indicators and symptomatology remain to be elucidated. While biomarkers for disease do not have to be involved with underlying pathophysiology and may be largely indicative of diagnosis or prognosis, the ideal may be a biomarker that is involved in underlying disease processes and which is therefore more likely to change with progression of the illness as well as potentially being more responsive to treatment. One of the main difficulties in conducting biomarker investigations for major psychiatric disorders is the relative inconsistency in clinical diagnoses between disorders such as bipolar and schizophrenia. This has led some researchers to investigate biomarkers associated with core symptoms of these disorders, such as psychosis. The aim of this review is to evaluate the contribution of post-mortem brain investigations to elucidating the pathophysiology pathways involved in schizophrenia and psychosis, with an emphasis on major neurotransmitter systems that have been implicated. This data will then be compared to functional neuroimaging findings as well as findings from blood based gene expression investigations in schizophrenia in order to highlight the relative overlap in pathological processes between these different modalities used to elucidate pathogenesis of schizophrenia. In addition we will cover some recent and exciting findings demonstrating microRNA (miRNA) dysregulation in both the blood and the brain in patients with schizophrenia. These changes are pertinent to the topic due to their known role in post-transcriptional modification of gene expression with the potential to contribute or underlie gene expression changes observed in schizophrenia. Finally, we will discuss how post-mortem studies may aid future biomarker investigations.
  • Item
    Thumbnail Image
    Predicting the diagnosis of autism spectrum disorder using gene pathway analysis
    Skafidas, E ; Testa, R ; Zantomio, D ; Chana, G ; Everall, IP ; Pantelis, C (NATURE PUBLISHING GROUP, 2014-04)
    Autism spectrum disorder (ASD) depends on a clinical interview with no biomarkers to aid diagnosis. The current investigation interrogated single-nucleotide polymorphisms (SNPs) of individuals with ASD from the Autism Genetic Resource Exchange (AGRE) database. SNPs were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG)-derived pathways to identify affected cellular processes and develop a diagnostic test. This test was then applied to two independent samples from the Simons Foundation Autism Research Initiative (SFARI) and Wellcome Trust 1958 normal birth cohort (WTBC) for validation. Using AGRE SNP data from a Central European (CEU) cohort, we created a genetic diagnostic classifier consisting of 237 SNPs in 146 genes that correctly predicted ASD diagnosis in 85.6% of CEU cases. This classifier also predicted 84.3% of cases in an ethnically related Tuscan cohort; however, prediction was less accurate (56.4%) in a genetically dissimilar Han Chinese cohort (HAN). Eight SNPs in three genes (KCNMB4, GNAO1, GRM5) had the largest effect in the classifier with some acting as vulnerability SNPs, whereas others were protective. Prediction accuracy diminished as the number of SNPs analyzed in the model was decreased. Our diagnostic classifier correctly predicted ASD diagnosis with an accuracy of 71.7% in CEU individuals from the SFARI (ASD) and WTBC (controls) validation data sets. In conclusion, we have developed an accurate diagnostic test for a genetically homogeneous group to aid in early detection of ASD. While SNPs differ across ethnic groups, our pathway approach identified cellular processes common to ASD across ethnicities. Our results have wide implications for detection, intervention and prevention of ASD.
  • Item
    Thumbnail Image
    Elevated peripheral expression of neuregulin-1 (NRG1) mRNA isoforms in clozapine-treated schizophrenia patients
    Mostaid, MS ; Lee, TT ; Chana, G ; Sundram, S ; Weickert, CS ; Pantelis, C ; Everall, I ; Bousman, C (NATURE PUBLISHING GROUP, 2017-12-11)
    Differential expression of neuregulin-1 (NRG1) mRNA isoforms and proteins has been reported in schizophrenia, primarily in post-mortem brain tissue. In this study, we examined 12 NRG1 SNPs, eight NRG1 mRNA isoforms (type I, type I(Ig2), type II, type III, type IV, EGFα, EGFβ, pan-NRG1) in whole blood, and NRG1-β1 protein in serum of clozapine-treated schizophrenia patients (N = 71) and healthy controls (N = 57). In addition, using cultured peripheral blood mononuclear cells (PBMC) from 15 healthy individuals, we examined the effect of clozapine on NRG1 mRNA isoform and protein expression. We found elevated levels of NRG1 mRNA, specifically the EGFα (P = 0.0175), EGFβ (P = 0.002) and type I(Ig2) (P = 0.023) containing transcripts, but lower NRG1-β1 serum protein levels (P = 0.019) in schizophrenia patients compared to healthy controls. However, adjusting for smoking status attenuated the difference in NRG1-β1 serum levels (P = 0.050). Examination of clinical factors showed NRG1 EGFα (P = 0.02) and EGFβ (P = 0.02) isoform expression was negatively correlated with age of onset. However, we found limited evidence that NRG1 mRNA isoform or protein expression was associated with current chlorpromazine equivalent dose or clozapine plasma levels, the latter corroborated by our PBMC clozapine exposure experiment. Our SNP analysis found no robust expression quantitative trait loci. Our results represent the first comprehensive investigation of NRG1 isoforms and protein expression in the blood of clozapine-treated schizophrenia patients and suggest levels of some NRG1 transcripts are upregulated in those with schizophrenia.
  • Item
    Thumbnail Image
    Graphene foam as a biocompatible scaffold for culturing human neurons
    D'Abaco, GM ; Mattei, C ; Nasr, BK ; Hudson, EJ ; Alshawaf, AJ ; Chana, G ; Everall, IP ; Nayagam, B ; Dottori, M ; Skafidas, E (ROYAL SOC, 2018-03)
    In this study, we explore the use of electrically active graphene foam as a scaffold for the culture of human-derived neurons. Human embryonic stem cell (hESC)-derived cortical neurons fated as either glutamatergic or GABAergic neuronal phenotypes were cultured on graphene foam. We show that graphene foam is biocompatible for the culture of human neurons, capable of supporting cell viability and differentiation of hESC-derived cortical neurons. Based on the findings, we propose that graphene foam represents a suitable scaffold for engineering neuronal tissue and warrants further investigation as a model for understanding neuronal maturation, function and circuit formation.
  • Item
    Thumbnail Image
    No preliminary evidence of differences in astrocyte density within the white matter of the dorsolateral prefrontal cortex in autism
    Lee, TT ; Skafidas, E ; Dottori, M ; Zantomio, D ; Pantelis, C ; Everall, I ; Chana, G (BMC, 2017-12-08)
    BACKGROUND: While evidence for white matter and astrocytic abnormalities exist in autism, a detailed investigation of astrocytes has not been conducted. Such an investigation is further warranted by an increasing role for neuroinflammation in autism pathogenesis, with astrocytes being key players in this process. We present the first study of astrocyte density and morphology within the white matter of the dorsolateral prefrontal cortex (DLPFC) in individuals with autism. METHODS: DLPFC formalin-fixed sections containing white matter from individuals with autism (n = 8, age = 4-51 years) and age-matched controls (n = 7, age = 4-46 years) were immunostained for glial fibrillary acidic protein (GFAP). Density of astrocytes and other glia were estimated via the optical fractionator, astrocyte somal size estimated via the nucleator, and astrocyte process length via the spaceballs probe. RESULTS: We found no evidence for alteration in astrocyte density within DLPFC white matter of individuals with autism versus controls, together with no differences in astrocyte somal size and process length. CONCLUSION: Our results suggest that astrocyte abnormalities within the white matter in the DLPFC in autism may be less pronounced than previously thought. However, astrocytic dysregulation may still exist in autism, even in the absence of gross morphological changes. Our lack of evidence for astrocyte abnormalities could have been confounded to an extent by having a small sample size and wide age range, with pathological features potentially restricted to early stages of autism. Nonetheless, future investigations would benefit from assessing functional markers of astrocytes in light of the underlying pathophysiology of autism.
  • Item
    Thumbnail Image
    Inhibition of catechol-O-methyl transferase (COMT) by tolcapone restores reductions in microtubule-associated protein 2 (MAP2) and synaptophysin (SYP) following exposure of neuronal cells to neurotropic HIV
    Lee, TT ; Chana, G ; Gorry, PR ; Ellett, A ; Bousman, CA ; Churchill, MJ ; Gray, LR ; Everall, IP (SPRINGER, 2015-10)
    This investigation aimed to assess whether inhibition of cathecol-O-methyl transferase (COMT) by tolcapone could provide neuroprotection against HIV-associated neurodegenerative effects. This study was conducted based on a previous work, which showed that a single nucleotide polymorphism (SNP) at position 158 (val158met) in COMT, resulted in 40 % lower COMT activity. Importantly, this reduction confers a protective effect against HIV-associated neurocognitive disorders (HAND), which have been linked to HIV-associated brain changes. SH-SY5Y-differentiated neurons were exposed to macrophage-propagated HIV (neurotropic MACS2-Br strain) in the presence or absence of tolcapone for 6 days. RNA was extracted, and qPCR was performed using Qiagen RT2 custom array consisting of genes for neuronal and synaptic integrity, COMT and pro-inflammatory markers. Immunofluorescence was conducted to validate the gene expression changes at the protein level. Our findings demonstrated that HIV significantly increased the messenger RNA (mRNA) expression of COMT while reducing the expression of microtubule-associated protein 2 (MAP2) (p = 0.0015) and synaptophysin (SYP) (p = 0.012) compared to control. A concomitant exposure of tolcapone ameliorated the perturbed expression of MAP2 (p = 0.009) and COMT (p = 0.024) associated with HIV. Immunofluorescence revealed a trend reduction of SYP and MAP2 with exposure to HIV and that concomitant exposure of tolcapone increased SYP (p = 0.016) compared to HIV alone. Our findings demonstrated in vitro that inhibition of COMT can ameliorate HIV-associated neurodegenerative changes that resulted in the decreased expression of the structural and synaptic components MAP2 and SYP. As HIV-associated dendritic and synaptic damage are contributors to HAND, inhibition of COMT may represent a potential strategy for attenuating or preventing some of the symptoms of HAND.
  • Item
    Thumbnail Image
    Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells
    Alshawaf, AJ ; Viventi, S ; Qiu, W ; D'Abaco, G ; Nayagam, B ; Erlichster, M ; Chana, G ; Everall, I ; Ivanusic, J ; Skafidas, E ; Dottori, M (NATURE PORTFOLIO, 2018-01-12)
    The dorsal root ganglia (DRG) consist of a multitude of sensory neuronal subtypes that function to relay sensory stimuli, including temperature, pressure, pain and position to the central nervous system. Our knowledge of DRG sensory neurons have been predominantly driven by animal studies and considerably less is known about the human DRG. Human embryonic stem cells (hESC) are valuable resource to help close this gap. Our previous studies reported an efficient system for deriving neural crest and DRG sensory neurons from hESC. Here we show that this differentiation system gives rise to heterogeneous populations of sensory neuronal subtypes as demonstrated by phenotypic and functional analyses. Furthermore, using microelectrode arrays the maturation rate of the hESC-derived sensory neuronal cultures was monitored over 8 weeks in culture, showing their spontaneous firing activities starting at about 12 days post-differentiation and reaching maximum firing at about 6 weeks. These studies are highly valuable for developing an in vitro platform to study the diversity of sensory neuronal subtypes found within the human DRG.
  • Item
    No Preview Available
    Microglial activation and progressive brain changes in schizophrenia
    Laskaris, LE ; Di Biase, MA ; Everall, I ; Chana, G ; Christopoulos, A ; Skafidas, E ; Cropley, VL ; Pantelis, C (WILEY, 2016-02)
    Schizophrenia is a debilitating disorder that typically begins in adolescence and is characterized by perceptual abnormalities, delusions, cognitive and behavioural disturbances and functional impairments. While current treatments can be effective, they are often insufficient to alleviate the full range of symptoms. Schizophrenia is associated with structural brain abnormalities including grey and white matter volume loss and impaired connectivity. Recent findings suggest these abnormalities follow a neuroprogressive course in the earliest stages of the illness, which may be associated with episodes of acute relapse. Neuroinflammation has been proposed as a potential mechanism underlying these brain changes, with evidence of increased density and activation of microglia, immune cells resident in the brain, at various stages of the illness. We review evidence for microglial dysfunction in schizophrenia from both neuroimaging and neuropathological data, with a specific focus on studies examining microglial activation in relation to the pathology of grey and white matter. The studies available indicate that the link between microglial dysfunction and brain change in schizophrenia remains an intriguing hypothesis worthy of further examination. Future studies in schizophrenia should: (i) use multimodal imaging to clarify this association by mapping brain changes longitudinally across illness stages in relation to microglial activation; (ii) clarify the nature of microglial dysfunction with markers specific to activation states and phenotypes; (iii) examine the role of microglia and neurons with reference to their overlapping roles in neuroinflammatory pathways; and (iv) examine the impact of novel immunomodulatory treatments on brain structure in schizophrenia.
  • Item
    Thumbnail Image
    Decreased expression of mGluR5 within the dorsolateral prefrontal cortex in autism and increased microglial number in mGluR5 knockout mice: Pathophysiological and neurobehavioral implications
    Chana, G ; Laskaris, L ; Pantelis, C ; Gillett, P ; Testa, R ; Zantomio, D ; Burrows, EL ; Hannan, AJ ; Everall, IP ; Skafidas, E (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2015-10)
    Metabotropic glutamate receptor 5 (mGluR5) and microglial abnormalities have been implicated in autism spectrum disorder (ASD). However, controversy exists as to whether the receptor is down or upregulated in functioning in ASD. In addition, whilst activation of mGluR5 has been shown to attenuate microglial activation, its role in maintaining microglial homeostasis during development has not been investigated. We utilised published microarray data from the dorsolateral prefrontal cortex (DLPFC) of control (n=30) and ASD (n=27) individuals to carry out regression analysis to assess gene expression of mGluR5 downstream signalling elements. We then conducted a post-mortem brain stereological investigation of the DLPFC, to estimate the proportion of mGluR5-positive neurons and glia. Finally, we carried out stereological investigation into numbers of microglia in mGluR5 knockout mice, relative to wildtype littermates, together with assessment of changes in microglial somal size, as an indicator of activation status. We found that gene expression of mGluR5 was significantly decreased in ASD versus controls (p=0.018) as well as downstream elements SHANK3 (p=0.005) and PLCB1 (p=0.009) but that the pro-inflammatory marker NOS2 was increased (p=0.047). Intensity of staining of mGluR5-positive neurons was also significantly decreased in ASD versus controls (p=0.016). Microglial density was significantly increased in mGluR5 knockout animals versus wildtype controls (p=0.011). Our findings provide evidence for decreased expression of mGluR5 and its signalling components representing a key pathophysiological hallmark in ASD with implications for the regulation of microglial number and activation during development. This is important in the context of microglia being considered to play key roles in synaptic pruning during development, with preservation of appropriate connectivity relevant for normal brain functioning.