Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    Heterogeneity and Classification of Recent Onset Psychosis and Depression: A Multimodal Machine Learning Approach
    Lalousis, PA ; Wood, SJ ; Schmaal, L ; Chisholm, K ; Griffiths, S ; Reniers, R ; Bertolino, A ; Borgwardt, S ; Brambilla, P ; Kambeitz, J ; Lencer, R ; Pantelis, C ; Ruhrmann, S ; Salokangas, RKR ; Schultze-Lutter, F ; Bonivento, C ; Dwyer, DB ; Ferro, A ; Haidl, T ; Rosen, M ; Schmidt, A ; Meisenzahl, E ; Koutsouleris, N ; Upthegrove, R (Elsevier BV, 2021-05)
  • Item
    No Preview Available
    Heterogeneity and Classification of Recent Onset Psychosis and Depression: A Multimodal Machine Learning Approach
    Lalousis, PA ; Wood, SJ ; Schmaal, L ; Chisholm, K ; Griffiths, SL ; Reniers, RLEP ; Bertolino, A ; Borgwardt, S ; Brambilla, P ; Kambeitz, J ; Lencer, R ; Pantelis, C ; Ruhrmann, S ; Salokangas, RKR ; Schultze-Lutter, F ; Bonivento, C ; Dwyer, D ; Ferro, A ; Haidl, T ; Rosen, M ; Schmidt, A ; Meisenzahl, E ; Koutsouleris, N ; Upthegrove, R (OXFORD UNIV PRESS, 2021-07)
    Diagnostic heterogeneity within and across psychotic and affective disorders challenges accurate treatment selection, particularly in the early stages. Delineation of shared and distinct illness features at the phenotypic and brain levels may inform the development of more precise differential diagnostic tools. We aimed to identify prototypes of depression and psychosis to investigate their heterogeneity, with common, comorbid transdiagnostic symptoms. Analyzing clinical/neurocognitive and grey matter volume (GMV) data from the PRONIA database, we generated prototypic models of recent-onset depression (ROD) vs. recent-onset psychosis (ROP) by training support-vector machines to separate patients with ROD from patients with ROP, who were selected for absent comorbid features (pure groups). Then, models were applied to patients with comorbidity, ie, ROP with depressive symptoms (ROP+D) and ROD participants with sub-threshold psychosis-like features (ROD+P), to measure their positions within the affective-psychotic continuum. All models were independently validated in a replication sample. Comorbid patients were positioned between pure groups, with ROP+D patients being more frequently classified as ROD compared to pure ROP patients (clinical/neurocognitive model: χ2 = 14.874; P < .001; GMV model: χ2 = 4.933; P = .026). ROD+P patient classification did not differ from ROD (clinical/neurocognitive model: χ2 = 1.956; P = 0.162; GMV model: χ2 = 0.005; P = .943). Clinical/neurocognitive and neuroanatomical models demonstrated separability of prototypic depression from psychosis. The shift of comorbid patients toward the depression prototype, observed at the clinical and biological levels, suggests that psychosis with affective comorbidity aligns more strongly to depressive rather than psychotic disease processes. Future studies should assess how these quantitative measures of comorbidity predict outcomes and individual responses to stratified therapeutic interventions.
  • Item
    Thumbnail Image
    Neurobiologically Based Stratification of Recent- Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes
    Lalousis, PA ; Schmaal, L ; Wood, SJ ; Reniers, RLEP ; Barnes, NM ; Chisholm, K ; Griffiths, SL ; Stainton, A ; Wen, J ; Hwang, G ; Davatzikos, C ; Wenzel, J ; Kambeitz-Ilankovic, L ; Andreou, C ; Bonivento, C ; Dannlowski, U ; Ferro, A ; Lichtenstein, T ; Riecher-Rossler, A ; Romer, G ; Upthegrove, R ; Lencer, R ; Pantelis, C ; Ruhrmann, S ; Salokangas, RKR ; Schultze-Lutter, F ; Schmidt, A ; Meisenzahl, E ; Koutsouleris, N ; Dwyer, D ; Rosen, M ; Bertolino, A ; Borgwardt, S ; Brambilla, P ; Kambeitz, J (ELSEVIER SCIENCE INC, 2022-10-01)
    BACKGROUND: Identifying neurobiologically based transdiagnostic categories of depression and psychosis may elucidate heterogeneity and provide better candidates for predictive modeling. We aimed to identify clusters across patients with recent-onset depression (ROD) and recent-onset psychosis (ROP) based on structural neuroimaging data. We hypothesized that these transdiagnostic clusters would identify patients with poor outcome and allow more accurate prediction of symptomatic remission than traditional diagnostic structures. METHODS: HYDRA (Heterogeneity through Discriminant Analysis) was trained on whole-brain volumetric measures from 577 participants from the discovery sample of the multisite PRONIA study to identify neurobiologically driven clusters, which were then externally validated in the PRONIA replication sample (n = 404) and three datasets of chronic samples (Centre for Biomedical Research Excellence, n = 146; Mind Clinical Imaging Consortium, n = 202; Munich, n = 470). RESULTS: The optimal clustering solution was two transdiagnostic clusters (cluster 1: n = 153, 67 ROP, 86 ROD; cluster 2: n = 149, 88 ROP, 61 ROD; adjusted Rand index = 0.618). The two clusters contained both patients with ROP and patients with ROD. One cluster had widespread gray matter volume deficits and more positive, negative, and functional deficits (impaired cluster), and one cluster revealed a more preserved neuroanatomical signature and more core depressive symptomatology (preserved cluster). The clustering solution was internally and externally validated and assessed for clinical utility in predicting 9-month symptomatic remission, outperforming traditional diagnostic structures. CONCLUSIONS: We identified two transdiagnostic neuroanatomically informed clusters that are clinically and biologically distinct, challenging current diagnostic boundaries in recent-onset mental health disorders. These results may aid understanding of the etiology of poor outcome patients transdiagnostically and improve development of stratified treatments.