Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 27
  • Item
    Thumbnail Image
    Cumulative trauma load and timing of trauma prior to military deployment differentially influences inhibitory control processing across deployment
    Miller, LN ; Forbes, D ; Mcfarlane, AC ; Lawrence-Wood, E ; Simmons, JG ; Felmingham, K (NATURE PORTFOLIO, 2023-12-05)
    Military personnel experience high trauma load that can change brain circuitry leading to impaired inhibitory control and posttraumatic stress disorder (PTSD). Inhibitory control processing may be particularly vulnerable to developmental and interpersonal trauma. This study examines the differential role of cumulative pre-deployment trauma and timing of trauma on inhibitory control using the Go/NoGo paradigm in a military population. The Go/NoGo paradigm was administered to 166 predominately male army combat personnel at pre- and post-deployment. Linear mixed models analyze cumulative trauma, trauma onset, and post-deployment PTSD symptoms on NoGo-N2 and NoGo-P3 amplitude and latency across deployment. Here we report, NoGo-N2 amplitude increases and NoGo-P3 amplitude and latency decreases in those with high prior interpersonal trauma across deployment. Increases in NoGo-P3 amplitude following adolescent-onset trauma and NoGo-P3 latency following childhood-onset and adolescent-onset trauma are seen across deployment. Arousal symptoms positively correlated with conflict monitoring. Our findings support the cumulative trauma load and sensitive period of trauma exposure models for inhibitory control processing in a military population. High cumulative interpersonal trauma impacts conflict monitoring and response suppression and increases PTSD symptoms whereas developmental trauma differentially impacts response suppression. This research highlights the need for tailored strategies for strengthening inhibitory control, and that consider timing and type of trauma in military personnel.
  • Item
    No Preview Available
    Emotion regulation strategy use in PTSD: A daily life study
    O'Brien, H ; Kalokerinos, EK ; Felmingham, K ; Lau, W ; O'Donnell, M (ELSEVIER, 2023-10-01)
    BACKGROUND: Posttraumatic Stress Disorder is associated with emotion regulation difficulties. However, our understanding of these difficulties has been limited by the reliance of previous work on retrospective trait self-reports, which are unable to capture dynamic, ecologically-valid use of emotion regulation strategies. METHODS: To address this issue, this study used an ecological momentary assessment (EMA) design to understand the impact of PTSD on emotion regulation in daily life. We conducted an EMA study in a trauma exposed sample with varying levels of PTSD severity (N = 70; 7 days; 423 observations). RESULTS: We found that PTSD severity was linked to greater use of disengagement and perseverative-based strategies to manage negative emotions, regardless of emotional intensity. LIMITATIONS: Study design did not allow investigation into the temporal use of emotion regulation strategies and small sample size. CONCLUSIONS: This pattern of responding to emotions may interfere with engaging with the fear structure and thus impair emotion processing in current frontline treatments; clinical implications are discussed.
  • Item
    No Preview Available
    Frontoamygdalar Effective Connectivity in Youth Depression and Treatment Response
    Kung, P-H ; Davey, CG ; Harrison, BJ ; Jamieson, AJ ; Felmingham, KL ; Steward, T (ELSEVIER SCIENCE INC, 2023-12-15)
    BACKGROUND: Emotion regulation deficits are characteristic of youth depression and are underpinned by altered frontoamygdalar function. However, the causal dynamics of frontoamygdalar pathways in depression and how these dynamics relate to treatment prognosis remain unexplored. This study aimed to assess frontoamygdalar effective connectivity during cognitive reappraisal in youths with depression and to test whether pathway dynamics are predictive of individual response to combined cognitive behavioral therapy plus treatment with fluoxetine or placebo. METHODS: One hundred seven young people with moderate to severe depression and 94 healthy control participants completed a functional magnetic resonance imaging cognitive reappraisal task. After the task, 87 participants with depression were randomized and received 12 weeks of cognitive behavioral therapy plus either fluoxetine or placebo. Dynamic causal modeling was used to map frontoamygdalar effective connectivity during reappraisal and to assess the predictive capacity of baseline frontoamygdalar effective connectivity on depression diagnosis and posttreatment depression remission. RESULTS: Young people with depression showed weaker inhibitory modulation of ventrolateral prefrontal cortex to amygdala connectivity during reappraisal (0.29 Hz, posterior probability = 1.00). Leave-one-out cross-validation demonstrated that this effect was sufficiently large to predict individual diagnostic status (r = 0.20, p = .003). Posttreatment depression remission was associated with weaker excitatory ventromedial prefrontal cortex to amygdala connectivity (-0.56 Hz, posterior probability = 1.00) during reappraisal at baseline, though this effect did not predict individual remission status (r = -0.02, p = .561). CONCLUSIONS: Frontoamygdalar effective connectivity shows promise in identifying youth depression diagnosis, and circuits responsible for negative affect regulation are implicated in responsiveness to first-line depression treatments.
  • Item
    No Preview Available
    Association of Neural Connectome With Early Experiences of Abuse in Adults.
    Korgaonkar, MS ; Breukelaar, IA ; Felmingham, K ; Williams, LM ; Bryant, RA (American Medical Association (AMA), 2023-01-03)
    IMPORTANCE: More than 10% of children experience sexual, physical, or emotional abuse, and abuse experienced during sensitive neurodevelopmental periods is associated with a greater risk of psychiatric disorders. OBJECTIVE: To investigate the extent to which a history of abuse is associated with alterations in the intrinsic functional connectome of the adult brain independent from the restriction of associated psychiatric conditions. DESIGN, SETTING, AND PARTICIPANTS: This cohort study assessed data from 768 adult participants from the greater Sydney, Australia, area who were included in the study without diagnostic restrictions and categorized based on a history of childhood sexual, physical, and/or emotional abuse. Data were collected from January 1, 2009, to December 31, 2015; data analysis was performed from October 1, 2020, to March 31, 2022. MAIN OUTCOMES AND MEASURES: Outcomes were structured psychiatric interview responses, self-report of the frequency and extent of various types of negative experiences in childhood and adolescence, and intrinsic functional connectivity derived from 5 functional magnetic resonance imaging tasks and estimated among 436 brain regions, comprising intranetwork and internetwork connectivity of 8 large-scale brain networks. RESULTS: Among the 647 individuals with usable data (330 female [51.0%]; mean [SD] age, 33.3 [12.0] years; age range, 18.2-69.2 years), history of abuse was associated with greater likelihood of a current psychiatric illness (odds ratio, 4.55; 95% CI, 3.07-6.72; P < .001) and with greater depressive, anxiety, and stress symptoms (mean difference, 20.4; 95% CI, 16.1-24.7; P < .001). An altered connectome signature of higher connectivity within somatomotor, dorsal, and ventral attention networks and between these networks and executive control and default mode networks was observed in individuals with a history of abuse experienced during childhood (n = 127) vs those without a history of abuse (n = 442; mean difference, 0.07; 95% CI, 0.05-0.08; familywise, Bonferroni-corrected P = .01; Cohen d = 0.82) and compared with those who experienced abuse in adolescence (n = 78; mean difference, 0.06; 95% CI, 0.04-0.08]; familywise, Bonferroni-corrected P < .001; Cohen d = 0.68). Connectome alterations were not observed for those who experienced abuse in adolescence. Connectivity of this signature was transdiagnostic and independent of the nature and frequency of abuse, sex, or current symptomatic state. CONCLUSIONS AND RELEVANCE: Findings highlight the associations of exposure to abuse before and during adolescence with the whole-brain functional connectome. The experience of child abuse was found to be associated with physiologic changes in intrinsic connectivity, independent of psychopathology, in a way that may affect functioning of systems responsible for perceptual processing and attention.
  • Item
    No Preview Available
    Cortico-Striatal Activity Characterizes Human Safety Learning via Pavlovian Conditioned Inhibition
    Laing, PAF ; Steward, T ; Davey, CG ; Felmingham, KL ; Fullana, MA ; Vervliet, B ; Greaves, MD ; Moffat, B ; Glarin, RK ; Harrison, BJ (SOC NEUROSCIENCE, 2022-06-22)
    Safety learning generates associative links between neutral stimuli and the absence of threat, promoting the inhibition of fear and security-seeking behaviors. Precisely how safety learning is mediated at the level of underlying brain systems, particularly in humans, remains unclear. Here, we integrated a novel Pavlovian conditioned inhibition task with ultra-high field (7 Tesla) fMRI to examine the neural basis of safety learning in 49 healthy participants. In our task, participants were conditioned to two safety signals: a conditioned inhibitor that predicted threat omission when paired with a known threat signal (A+/AX-), and a standard safety signal that generally predicted threat omission (BC-). Both safety signals evoked equivalent autonomic and subjective learning responses but diverged strongly in terms of underlying brain activation (PFDR whole-brain corrected). The conditioned inhibitor was characterized by more prominent activation of the dorsal striatum, anterior insular, and dorsolateral PFC compared with the standard safety signal, whereas the latter evoked greater activation of the ventromedial PFC, posterior cingulate, and hippocampus, among other regions. Further analyses of the conditioned inhibitor indicated that its initial learning was characterized by consistent engagement of dorsal striatal, midbrain, thalamic, premotor, and prefrontal subregions. These findings suggest that safety learning via conditioned inhibition involves a distributed cortico-striatal circuitry, separable from broader cortical regions involved with processing standard safety signals (e.g., CS-). This cortico-striatal system could represent a novel neural substrate of safety learning, underlying the initial generation of "stimulus-safety" associations, distinct from wider cortical correlates of safety processing, which facilitate the behavioral outcomes of learning.SIGNIFICANCE STATEMENT Identifying safety is critical for maintaining adaptive levels of anxiety, but the neural mechanisms of human safety learning remain unclear. Using 7 Tesla fMRI, we compared learning-related brain activity for a conditioned inhibitor, which actively predicted threat omission, and a standard safety signal (CS-), which was passively unpaired with threat. The inhibitor engaged an extended circuitry primarily featuring the dorsal striatum, along with thalamic, midbrain, and premotor/PFC regions. The CS- exclusively involved cortical safety-related regions observed in basic safety conditioning, such as the vmPFC. These findings extend current models to include learning-specific mechanisms for encoding stimulus-safety associations, which might be distinguished from expression-related cortical mechanisms. These insights may suggest novel avenues for targeting dysfunctional safety learning in psychopathology.
  • Item
    No Preview Available
    Characterisation of Deficits and Sex Differences in Verbal and Visual Memory/Learning in Bipolar Disorder
    Gogos, A ; Son, J ; Rossell, SL ; Karantonis, J ; Furlong, LS ; Felmingham, K ; Van Rheenen, TE (CAMBRIDGE UNIV PRESS, 2023-01)
    OBJECTIVE: Cognitive impairment is consistently reported in bipolar disorder (BD), but few studies have characterised which memory component processes are affected. Further, it is unknown whether the component processes underlying memory impairment are moderated by sex. The present study examined diagnosis and sex differences in both verbal and visual memory/learning domains in patients with BD and psychiatrically healthy controls. METHOD: Verbal and visual memory/learning were measured using the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R). 114 patients with BD (n = 50 males, n = 64 females), were compared to 105 psychiatrically healthy controls (n = 42 males, n = 63 females). RESULTS: Patients with BD had worse performance in verbal and visual immediate and total recall, verbal and visual delayed free recall, and verbal recognition discrimination scores, but there were no group differences in learning slopes and cumulative learning index scores. There were trends for BD females to outperform BD males in visual memory/learning free recall and cumulative learning, but these results did not survive multiple testing correction. These findings did not change in a secondary sensitivity analysis comparing only strictly euthymic BD patients to controls (n = 64). CONCLUSION: The present study found trait-like verbal and visual memory/learning impairment in BD that was attributable to deficient encoding and/or consolidation processes rather than deficits in learning. We did not find marked sex differences in either visual or verbal memory/learning measures, although some trend level effects were apparent and deserve exploration in future studies.
  • Item
    No Preview Available
    Estradiol variability is associated with brain structure in early adolescent females
    Zwaan, IS ; Felmingham, K ; Vijayakumar, N ; Patton, G ; Mundy, L ; Byrne, ML ; Simmons, J ; Whittle, S (PERGAMON-ELSEVIER SCIENCE LTD, 2022-12)
    One-third of adolescents are diagnosed with a psychiatric disorder by age 16, with female adolescents twice as likely to experience an internalizing (i.e., depression or anxiety) disorder as their male peers. Individual differences in pubertal factors may partially underlie this disparity, potentially via the role of pubertal hormones in shaping brain development. While research has examined links between estradiol levels and brain structure, individual variation in estradiol levels has not been considered. Using longitudinal data from 44 female adolescents (baseline age M = 11.7; follow-up age M= 13.3), we examined associations between both average estradiol and estradiol variability, and brain gray matter structure at baseline. We used a hypothesis-driven region of interest (ROI) approach focusing on subcortical and ventromedial prefrontal regions, in addition to an exploratory whole-brain analysis. We also investigated whether brain structure mediated the association between estradiol measures and internalizing (i.e., anxious and depressive) symptoms at follow-up. ROI analyses revealed a significant negative association between estradiol variability and thickness of the right medial orbitofrontal cortex (OFC, β = -0.39, FDR corrected p = .010). There were, however, no significant associations between average estradiol or estradiol variability and internalizing symptoms, nor was there evidence of mediation. Our results indicate that increased variation in estradiol levels across a month is associated with decreased cortical thickness in a brain region implicated in emotion processing, although implications for mental health are unclear. Findings, however, highlight the importance of considering individual variation in estradiol when examining links to brain development.
  • Item
    No Preview Available
    Subcortical contributions to salience network functioning during negative emotional processing
    Ince, S ; Steward, T ; Harrison, BJ ; Jamieson, AJ ; Davey, CG ; Agathos, JA ; Moffat, BA ; Glarin, RK ; Felmingham, KL (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2023-04-15)
    Core regions of the salience network (SN), including the anterior insula (aINS) and dorsal anterior cingulate cortex (dACC), coordinate rapid adaptive changes in attentional and autonomic processes in response to negative emotional events. In doing so, the SN incorporates bottom-up signals from subcortical brain regions, such as the amygdala and periaqueductal gray (PAG). However, the precise influence of these subcortical regions is not well understood. Using ultra-high field 7-Tesla functional magnetic resonance imaging, this study investigated the bottom-up interactions of the amygdala and PAG with the SN during negative emotional salience processing. Thirty-seven healthy participants completed an emotional oddball paradigm designed to elicit a salient negative emotional response via the presentation of random, task-irrelevant negative emotional images. Negative emotional processing was associated with prominent activation in the SN, spanning the amygdala, PAG, aINS, and dACC. Consistent with previous research, analysis using dynamic causal modelling revealed an excitatory influence from the amygdala to the aINS, dACC, and PAG. In contrast, the PAG showed an inhibitory influence on amygdala, aINS and dACC activity. Our findings suggest that the amygdala may amplify the processing of negative emotional stimuli in the SN to enable upstream access to attentional resources. In comparison, the inhibitory influence of the PAG possibly reflects its involvement in modulating sympathetic-parasympathetic autonomic arousal mediated by the SN. This PAG-mediated effect may be driven by amygdala input and facilitate bottom-up processing of negative emotional stimuli. Overall, our results show that the amygdala and PAG modulate divergent functions of the SN during negative emotional processing.
  • Item
    No Preview Available
    The neurobiology of Pavlovian safety learning: Towards an acquisition-expression framework
    Laing, PAF ; Felmingham, KL ; Davey, CG ; Harrison, BJ (PERGAMON-ELSEVIER SCIENCE LTD, 2022-11)
    Safety learning creates associations between conditional stimuli and the absence of threat. Studies of human fear conditioning have accumulated evidence for the neural signatures of safety over various paradigms, aligning on several common brain systems. While these systems are often interpreted as underlying safety learning in a generic sense, they may instead reflect the expression of learned safety, pertaining to processes of fear inhibition, positive affect, and memory. Animal models strongly suggest these can be separable from neural circuits implicated in the conditioning process itself (or safety acquisition). While acquisition-expression distinctions are ubiquitous in behavioural science, this lens has not been applied to safety learning, which remains a novel area in the field. In this mini-review, we overview findings from prevalent safety paradigms in humans, and synthesise these with insights from animal models to propose that the neurobiology of safety learning be conceptualised along an acquisition-expression model, with the aim of stimulating richer brain-based characterisations of this important process.
  • Item
    No Preview Available
    Differential engagement of the posterior cingulate cortex during cognitive restructuring of negative self- and social beliefs
    Agathos, J ; Steward, T ; Davey, CG ; Felmingham, KL ; Ince, S ; Moffat, BA ; Glarin, RK ; Harrison, BJ (OXFORD UNIV PRESS, 2023-05-13)
    Negative self-beliefs are a core feature of psychopathology, encompassing both negative appraisals about oneself directly (i.e. self-judgment) and negative inferences of how the self is appraised by others (i.e. social judgment). Challenging maladaptive self-beliefs via cognitive restructuring is a core treatment mechanism of gold-standard psychotherapies. However, the neural mechanisms underlying the restructuring of these two kinds of negative self-beliefs are poorly understood. Eighty-six healthy participants cognitively restructured self-judgment and social-judgment negative self-belief statements during 7 Tesla functional magnetic resonance imaging scanning. Cognitive restructuring broadly elicited activation in the core default mode network (DMN), salience and frontoparietal control regions. Restructuring self-judgment relative to social-judgment beliefs was associated with comparatively higher activation in the ventral posterior cingulate cortex (PCC)/retrosplenial cortex, while challenging social-judgment statements was associated with higher activation in the dorsal PCC/precuneus. While both regions showed increased functional connectivity with the supplementary and pre-supplementary motor areas during restructuring, the dorsal PCC displayed greater task-dependent connectivity with distributed regions involved in salience, attention and social cognition. Our findings indicate distinct patterns of PCC engagement contingent upon self- and social domains, highlighting a specialized role of the dorsal PCC in supporting neural interactions between the DMN and frontoparietal/salience networks during cognitive restructuring.