Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Genetic Influences on Cost-Efficient Organization of Human Cortical Functional Networks
    Fornito, A ; Zalesky, A ; Bassett, DS ; Meunier, D ; Ellison-Wright, I ; Yuecel, M ; Wood, SJ ; Shaw, K ; O'Connor, J ; Nertney, D ; Mowry, BJ ; Pantelis, C ; Bullmore, ET (SOC NEUROSCIENCE, 2011-03-02)
    The human cerebral cortex is a complex network of functionally specialized regions interconnected by axonal fibers, but the organizational principles underlying cortical connectivity remain unknown. Here, we report evidence that one such principle for functional cortical networks involves finding a balance between maximizing communication efficiency and minimizing connection cost, referred to as optimization of network cost-efficiency. We measured spontaneous fluctuations of the blood oxygenation level-dependent signal using functional magnetic resonance imaging in healthy monozygotic (16 pairs) and dizygotic (13 pairs) twins and characterized cost-efficient properties of brain network functional connectivity between 1041 distinct cortical regions. At the global network level, 60% of the interindividual variance in cost-efficiency of cortical functional networks was attributable to additive genetic effects. Regionally, significant genetic effects were observed throughout the cortex in a largely bilateral pattern, including bilateral posterior cingulate and medial prefrontal cortices, dorsolateral prefrontal and superior parietal cortices, and lateral temporal and inferomedial occipital regions. Genetic effects were stronger for cost-efficiency than for other metrics considered, and were more clearly significant in functional networks operating in the 0.09-0.18 Hz frequency interval than at higher or lower frequencies. These findings are consistent with the hypothesis that brain networks evolved to satisfy competitive selection criteria of maximizing efficiency and minimizing cost, and that optimization of network cost-efficiency represents an important principle for the brain's functional organization.
  • Item
    Thumbnail Image
    Disrupted salience network functional connectivity and white-matter microstructure in persons at risk for psychosis: findings from the LYRIKS study
    Wang, C ; Ji, F ; Hong, Z ; Poh, JS ; Krishnan, R ; Lee, J ; Rekhi, G ; Keefe, RSE ; Adcock, RA ; Wood, SJ ; Fornito, A ; Pasternak, O ; Chee, MWL ; Zhou, J (CAMBRIDGE UNIV PRESS, 2016-10)
    BACKGROUND: Salience network (SN) dysconnectivity has been hypothesized to contribute to schizophrenia. Nevertheless, little is known about the functional and structural dysconnectivity of SN in subjects at risk for psychosis. We hypothesized that SN functional and structural connectivity would be disrupted in subjects with At-Risk Mental State (ARMS) and would be associated with symptom severity and disease progression. METHOD: We examined 87 ARMS and 37 healthy participants using both resting-state functional magnetic resonance imaging and diffusion tensor imaging. Group differences in SN functional and structural connectivity were examined using a seed-based approach and tract-based spatial statistics. Subject-level functional connectivity measures and diffusion indices of disrupted regions were correlated with CAARMS scores and compared between ARMS with and without transition to psychosis. RESULTS: ARMS subjects exhibited reduced functional connectivity between the left ventral anterior insula and other SN regions. Reduced fractional anisotropy (FA) and axial diffusivity were also found along white-matter tracts in close proximity to regions of disrupted functional connectivity, including frontal-striatal-thalamic circuits and the cingulum. FA measures extracted from these disrupted white-matter regions correlated with individual symptom severity in the ARMS group. Furthermore, functional connectivity between the bilateral insula and FA at the forceps minor were further reduced in subjects who transitioned to psychosis after 2 years. CONCLUSIONS: Our findings support the insular dysconnectivity of the proximal SN hypothesis in the early stages of psychosis. Further developed, the combined structural and functional SN assays may inform the prognosis of persons at-risk for psychosis.
  • Item
    No Preview Available
    The Impact of Cannabis Use on Cognitive Functioning in Patients With Schizophrenia: A Meta-analysis of Existing Findings and New Data in a First-Episode Sample
    Yuecel, M ; Bora, E ; Lubman, DI ; Solowij, N ; Brewer, WJ ; Cotton, SM ; Conus, P ; Takagi, MJ ; Fornito, A ; Wood, SJ ; McGorry, PD ; Pantelis, C (OXFORD UNIV PRESS, 2012-03)
    Cannabis use is highly prevalent among people with schizophrenia, and coupled with impaired cognition, is thought to heighten the risk of illness onset. However, while heavy cannabis use has been associated with cognitive deficits in long-term users, studies among patients with schizophrenia have been contradictory. This article consists of 2 studies. In Study I, a meta-analysis of 10 studies comprising 572 patients with established schizophrenia (with and without comorbid cannabis use) was conducted. Patients with a history of cannabis use were found to have superior neuropsychological functioning. This finding was largely driven by studies that included patients with a lifetime history of cannabis use rather than current or recent use. In Study II, we examined the neuropsychological performance of 85 patients with first-episode psychosis (FEP) and 43 healthy nonusing controls. Relative to controls, FEP patients with a history of cannabis use (FEP + CANN; n = 59) displayed only selective neuropsychological impairments while those without a history (FEP - CANN; n = 26) displayed generalized deficits. When directly compared, FEP + CANN patients performed better on tests of visual memory, working memory, and executive functioning. Patients with early onset cannabis use had less neuropsychological impairment than patients with later onset use. Together, these findings suggest that patients with schizophrenia or FEP with a history of cannabis use have superior neuropsychological functioning compared with nonusing patients. This association between better cognitive performance and cannabis use in schizophrenia may be driven by a subgroup of "neurocognitively less impaired" patients, who only developed psychosis after a relatively early initiation into cannabis use.
  • Item
    No Preview Available
    Lack of Evidence for Regional Brain Volume or Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis: Findings From the Longitudinal Youth at Risk Study
    Klauser, P ; Zhou, J ; Lim, JKW ; Poh, JS ; Zheng, H ; Tng, HY ; Krishnan, R ; Lee, J ; Keefe, RSE ; Adcock, RA ; Wood, SJ ; Fornito, A ; Chee, MWL (OXFORD UNIV PRESS, 2015-11)
    There is cumulative evidence that young people in an "at-risk mental state" (ARMS) for psychosis show structural brain abnormalities in frontolimbic areas, comparable to, but less extensive than those reported in established schizophrenia. However, most available data come from ARMS samples from Australia, Europe, and North America while large studies from other populations are missing. We conducted a structural brain magnetic resonance imaging study from a relatively large sample of 69 ARMS individuals and 32 matched healthy controls (HC) recruited from Singapore as part of the Longitudinal Youth At-Risk Study (LYRIKS). We used 2 complementary approaches: a voxel-based morphometry and a surface-based morphometry analysis to extract regional gray and white matter volumes (GMV and WMV) and cortical thickness (CT). At the whole-brain level, we did not find any statistically significant difference between ARMS and HC groups concerning total GMV and WMV or regional GMV, WMV, and CT. The additional comparison of 2 regions of interest, hippocampal, and ventricular volumes, did not return any significant difference either. Several characteristics of the LYRIKS sample like Asian origins or the absence of current illicit drug use could explain, alone or in conjunction, the negative findings and suggest that there may be no dramatic volumetric or CT abnormalities in ARMS.
  • Item
    No Preview Available
    Altered Striatal Functional Connectivity in Subjects With an At-Risk Mental State for Psychosis
    Dandash, O ; Fornito, A ; Lee, J ; Keefe, RSE ; Chee, MWL ; Adcock, RA ; Pantelis, C ; Wood, SJ ; Harrison, BJ (OXFORD UNIV PRESS, 2014-07)
    Recent functional imaging work in individuals experiencing an at-risk mental state (ARMS) for psychosis has implicated dorsal striatal abnormalities in the emergence of psychotic symptoms, contrasting with earlier findings implicating the ventral striatum. Our aims here were to characterize putative dorsal and ventral striatal circuit-level abnormalities in ARMS individuals using resting-state functional magnetic resonance imaging (fMRI) and to investigate their relationship to positive psychotic symptoms. Resting-state fMRI was acquired in 74 ARMS subjects and 35 matched healthy controls. An established method for mapping ventral and dorsal striatal functional connectivity was used to examine corticostriatal functional integrity. Positive psychotic symptoms were assessed using the Comprehensive Assessment of At-Risk Mental State and the Positive and Negative Syndrome Scale. Compared with healthy controls, ARMS subjects showed reductions in functional connectivity between the dorsal caudate and right dorsolateral prefrontal cortex, left rostral medial prefrontal cortex, and thalamus, and between the dorsal putamen and left thalamic and lenticular nuclei. ARMS subjects also showed increased functional connectivity between the ventral putamen and the insula, frontal operculum, and superior temporal gyrus bilaterally. No differences in ventral striatal (ie, nucleus accumbens) functional connectivity were found. Altered functional connectivity in corticostriatal circuits were significantly correlated with positive psychotic symptoms. Together, these results suggest that risk for psychosis is mediated by a complex interplay of alterations in both dorsal and ventral corticostriatal systems.