Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group
    Kelly, S ; Jahanshad, N ; Zalesky, A ; Kochunov, P ; Agartz, I ; Alloza, C ; Andreassen, OA ; Arango, C ; Banaj, N ; Bouix, S ; Bousman, CA ; Brouwer, RM ; Bruggemann, J ; Bustillo, J ; Cahn, W ; Calhoun, V ; Cannon, D ; Carr, V ; Catts, S ; Chen, J ; Chen, J-X ; Chen, X ; Chiapponi, C ; Cho, KK ; Ciullo, V ; Corvin, AS ; Crespo-Facorro, B ; Cropley, V ; De Rossi, P ; Diaz-Caneja, CM ; Dickie, EW ; Ehrlich, S ; Fan, F-M ; Faskowitz, J ; Fatouros-Bergman, H ; Flyckt, L ; Ford, JM ; Fouche, J-P ; Fukunaga, M ; Gill, M ; Glahn, DC ; Gollub, R ; Goudzwaard, ED ; Guo, H ; Gur, RE ; Gur, RC ; Gurholt, TP ; Hashimoto, R ; Hatton, SN ; Henskens, FA ; Hibar, DP ; Hickie, IB ; Hong, LE ; Horacek, J ; Howells, FM ; Pol, HEH ; Hyde, CL ; Isaev, D ; Jablensky, A ; Jansen, PR ; Janssen, J ; Jonsson, EG ; Jung, LA ; Kahn, RS ; Kikinis, Z ; Liu, K ; Klauser, P ; Knoechel, C ; Kubicki, M ; Lagopoulos, J ; Langen, C ; Lawrie, S ; Lenroot, RK ; Lim, KO ; Lopez-Jaramillo, C ; Lyall, A ; Magnotta, V ; Mandl, RCW ; Mathalon, DH ; McCarley, RW ; McCarthy-Jones, S ; McDonald, C ; McEwen, S ; McIntosh, A ; Melicher, T ; Mesholam-Gately, R ; Michie, PT ; Mowry, B ; Mueller, BA ; Newell, DT ; O'Donnell, P ; Oertel-Knoechel, V ; Oestreich, L ; Paciga, SA ; Pantelis, C ; Pasternak, O ; Pearlson, G ; Pellicano, GR ; Pereira, A ; Zapata, JP ; Piras, F ; Potkin, SG ; Preda, A ; Rasser, PE ; Roalf, DR ; Roiz, R ; Roos, A ; Rotenberg, D ; Satterthwaite, TD ; Savadjiev, P ; Schall, U ; Scott, RJ ; Seal, ML ; Seidman, LJ ; Weickert, CS ; Whelan, CD ; Shenton, ME ; Kwon, JS ; Spalletta, G ; Spaniel, F ; Sprooten, E ; Stablein, M ; Stein, DJ ; Sundram, S ; Tan, Y ; Tan, S ; Tang, S ; Temmingh, HS ; Westlye, LT ; Tonnesen, S ; Tordesillas-Gutierrez, D ; Doan, NT ; Vaidya, J ; van Haren, NEM ; Vargas, CD ; Vecchio, D ; Velakoulis, D ; Voineskos, A ; Voyvodic, JQ ; Wang, Z ; Wan, P ; Wei, D ; Weickert, TW ; Whalley, H ; White, T ; Whitford, TJ ; Wojcik, JD ; Xiang, H ; Xie, Z ; Yamamori, H ; Yang, F ; Yao, N ; Zhang, G ; Zhao, J ; van Erp, TGM ; Turner, J ; Thompson, PM ; Donohoe, G (SPRINGERNATURE, 2018-05)
    The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.
  • Item
    No Preview Available
    Effect of long-term cannabis use on axonal fibre connectivity
    Zalesky, A ; Solowij, N ; Yuecel, M ; Lubman, DI ; Takagi, M ; Harding, IH ; Lorenzetti, V ; Wang, R ; Searle, K ; Pantelis, C ; Seal, M (OXFORD UNIV PRESS, 2012-07)
    Cannabis use typically begins during adolescence and early adulthood, a period when cannabinoid receptors are still abundant in white matter pathways across the brain. However, few studies to date have explored the impact of regular cannabis use on white matter structure, with no previous studies examining its impact on axonal connectivity. The aim of this study was to examine axonal fibre pathways across the brain for evidence of microstructural alterations associated with long-term cannabis use and to test whether age of regular cannabis use is associated with severity of any microstructural change. To this end, diffusion-weighted magnetic resonance imaging and brain connectivity mapping techniques were performed in 59 cannabis users with longstanding histories of heavy use and 33 matched controls. Axonal connectivity was found to be impaired in the right fimbria of the hippocampus (fornix), splenium of the corpus callosum and commissural fibres. Radial and axial diffusivity in these pathways were associated with the age at which regular cannabis use commenced. Our findings indicate long-term cannabis use is hazardous to the white matter of the developing brain. Delaying the age at which regular use begins may minimize the severity of microstructural impairment.