Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Effects of NRG1 and DAOA genetic variation on transition to psychosis in individuals at ultra-high risk for psychosis
    Bousman, CA ; Yung, AR ; Pantelis, C ; Ellis, JA ; Chavez, RA ; Nelson, B ; Lin, A ; Wood, SJ ; Amminger, GP ; Velakoulis, D ; McGorry, PD ; Everall, IP ; Foley, DL (NATURE PUBLISHING GROUP, 2013-04)
    Prospective studies have suggested genetic variation in the neuregulin 1 (NRG1) and D-amino-acid oxidase activator (DAOA) genes may assist in differentiating high-risk individuals who will or will not transition to psychosis. In a prospective cohort (follow-up=2.4-14.9 years) of 225 individuals at ultra-high risk (UHR) for psychosis, we assessed haplotype-tagging single-nucleotide polymorphisms (htSNPs) spanning NRG1 and DAOA for their association with transition to psychosis, using Cox regression analysis. Two NRG1 htSNPs (rs12155594 and rs4281084) predicted transition to psychosis. Carriers of the rs12155594 T/T or T/C genotype had a 2.34 (95% confidence interval (CI)=1.37-4.00) times greater risk of transition compared with C/C carriers. For every rs4281084 A-allele the risk of transition increased by 1.55 (95% CI=1.05-2.27). For every additional rs4281084-A and/or rs12155594-T allele carried the risk increased ∼1.5-fold, with 71.4% of those carrying a combination of 3 of these alleles transitioning to psychosis. None of the assessed DAOA htSNPs were associated with transition. Our findings suggest NRG1 genetic variation may improve our ability to identify UHR individuals at risk for transition to psychosis.
  • Item
    Thumbnail Image
    Neurocognitive predictors of transition to psychosis: medium- to long-term findings from a sample at ultra-high risk for psychosis
    Lin, A ; Yung, AR ; Nelson, B ; Brewer, WJ ; Riley, R ; Simmons, M ; Pantelis, C ; Wood, SJ (CAMBRIDGE UNIV PRESS, 2013-11)
    BACKGROUND: Individuals at ultra-high risk (UHR) for psychosis show reduced neurocognitive performance across domains but it is unclear which reductions are associated with transition to frank psychosis. The aim of this study was to investigate differences in baseline neurocognitive performance between UHR participants with (UHR-P) and without transition to psychosis (UHR-NP) and a healthy control (HC) group and examine neurocognitive predictors of transition over the medium to long term. METHOD: A sample of 325 UHR participants recruited consecutively from the Personal Assessment and Crisis Evaluation (PACE) Clinic in Melbourne and 66 HCs completed a neurocognitive assessment at baseline. The UHR group was followed up between 2.39 and 14.86 (median = 6.45) years later. Cox regression was used to investigate candidate neurocognitive predictors of psychosis onset. RESULTS: The UHR group performed more poorly than the HC group across a range of neurocognitive domains but only performance on digit symbol coding and picture completion differed between the groups. The risk of transition was only significantly associated with poorer performance on visual reproduction [hazard ratio (HR) 0.919, 95% confidence interval (CI) 0.876-0.965, p = 0.001] and matrix reasoning (HR 0.938, 95% CI 0.883-0.996, p = 0.037). These remained significant even after controlling for psychopathology at baseline. CONCLUSIONS: This study is the longest follow-up of an UHR sample to date. UHR status was associated with poorer neurocognitive performance compared to HCs on some tasks. Cognition at identification as UHR was not a strong predictor of risk for transition to psychosis. The results suggests the need to include more experimental paradigms that isolate discrete cognitive processes to better understand neurocognition at this early stage of illness.
  • Item
    Thumbnail Image
    Cognitive precursors of severe mental disorders
    Wood, SJ ; Yung, AR ; Pantelis, C (PSYCHOLOGY PRESS, 2013-01-01)