Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 38
  • Item
    Thumbnail Image
    FRONTOSTRIATAL CONNECTIVITY IN TREATMENT-RESISTANT SCHIZOPHRENIA: RELATIONSHIP TO POSITIVE SYMPTOMS AND COGNITIVE FLEXIBILITY
    Cropley, V ; Ganella, E ; Wannan, C ; Zalesky, A ; Van Rheenen, T ; Bousman, C ; Everall, I ; Fornito, A ; Pantelis, C (OXFORD UNIV PRESS, 2018-04)
  • Item
    Thumbnail Image
    Navigating the Labyrinth of Pharmacogenetic Testing: A Guide to Test Selection
    Bousman, CA ; Zierhut, H ; Muller, DJ (WILEY, 2019-08)
  • Item
    Thumbnail Image
    SimPEL: Simulation-based power estimation for sequencing studies of low-prevalence conditions
    Mak, L ; Li, M ; Cao, C ; Gordon, P ; Tarailo-Graovac, M ; Bousman, C ; Wang, P ; Long, Q (WILEY, 2018-07)
    Power estimations are important for optimizing genotype-phenotype association study designs. However, existing frameworks are designed for common disorders, and thus ill-suited for the inherent challenges of studies for low-prevalence conditions such as rare diseases and infrequent adverse drug reactions. These challenges include small sample sizes and the need to leverage genetic annotation resources in association analyses for the purpose of ranking potential causal genes. We present SimPEL, a simulation-based program providing power estimations for the design of low-prevalence condition studies. SimPEL integrates the usage of gene annotation resources for association analyses. Customizable parameters, including the penetrance of the putative causal allele and the employed pathogenic scoring system, allow SimPEL to realistically model a large range of study designs. To demonstrate the effects of various parameters on power, we estimated the power of several simulated designs using SimPEL and captured power trends in agreement with observations from current literature on low-frequency condition studies. SimPEL, as a tool, provides researchers studying low-frequency conditions with an intuitive and highly flexible avenue for statistical power estimation. The platform-independent "batteries included" executable and default input files are available at https://github.com/precisionomics/SimPEL.
  • Item
    Thumbnail Image
    S187. EXPLORING NEURODEVELOPMENTAL AND FAMILIAL ORIGINS OF NEUROLOGICAL SOFT SIGNS IN SCHIZOPHRENIA
    Cooper, R ; Van Rheenen, T ; Zalesky, A ; Wannan, C ; Wang, Y ; Bousman, C ; Everall, I ; Pantelis, C ; Cropley, V (Oxford University Press (OUP), 2020-05-18)
    Abstract Background The neurodevelopmental hypothesis is the most widely regarded framework for understanding the development of schizophrenia. One of the most commonly cited pieces of evidence for this theory is the presence of neurological soft signs (NSS) in individuals prior to the onset of psychosis. Increased NSS is also reported in unaffected individuals with a family history of schizophrenia, suggesting that NSS may also have a familial component. Although much research has implicated reduced grey matter volume (GMV) in association with these signs, a subcomponent of volume, known as gyrification, has been poorly researched. Given that gyrification develops predominantly in prenatal life it may be particularly susceptible to a neurodevelopmental abnormality. The aims of this study were to investigate the neurodevelopmental and familial underpinnings of NSS in schizophrenia. Specifically, we examined the brain structural correlates, at both the level of GMV and gyrification, of NSS in individuals with schizophrenia, their unaffected relatives and healthy controls. We aimed to determine whether gyrification better predicted NSS severity than GMV, and whether the relationship between brain structure and NSS were present in a step-wise manner across the diagnostic groups. Methods The sample consisted of individuals with schizophrenia (N=66), their unaffected relatives (N=27) and healthy controls (N=53). NSS was assessed with the Neurological Evaluation Scale (NES), and GMV and gyrification were extracted from MRI using the FreeSurfer imaging suite. A series of analysis of covariance were used to compare NES scores and brain measures between the groups. Separate linear regression analyses were used to assess whether whole-brain GMV and gyrification predicted NES above a covariate-only model. Moderation analyses were used to assess whether the relationship between NES and brain structure were different between the diagnostic groups. Error control was achieved with a false discovery rate of 5%. Results NES was significantly higher in schizophrenia patients than relatives (p<.0001), who were in turn significantly higher than controls (p=.034). With the groups combined, lower GMV (p<.0001), as well as lower gyrification (p=.004), predicted higher NES above a covariate-only model. GMV predicted greater variance in NSS in comparison to gyrification, explaining an additional 20.3% of the variance in NES, in comparison to the additional 5.5% of variance in NES explained by gyrification. Diagnostic group moderated the association between GMV and NES (p=.019), but not between gyrification and NES (p=.245). Follow-up tests revealed that lower GMV was associated with higher NES in schizophrenia (t=-4.5, p<.0001) and relatives (t=-2.5, p=.015) but not controls (t=-1.9, p=.055). Discussion Our findings indicate that NSS is heritable, being present in patients with established schizophrenia, and to a lesser extent, in unaffected relatives. Consistent with previous research, we revealed that GMV predicted NSS severity, suggesting that abnormalities in volume may underlie these signs. We additionally found that gyrification predicted, although to a lesser extent than volume, NSS severity, providing some support for schizophrenia being of possible neurodevelopmental origin. Evidence for an association between volume and NSS in relatives, whom are not confounded by illness-related factors such as medication and symptom severity, indicates a familial contribution to the neural underpinnings of NSS. Together, our study suggests that there may be various aetiological pathways underlying soft signs across the schizophrenia diathesis, some that may be of familial or neurodevelopmental origin.
  • Item
    No Preview Available
    A Call for Clear and Consistent Communications Regarding the Role of Pharmacogenetics in Antidepressant Pharmacotherapy
    Hicks, JK ; Bishop, JR ; Gammal, RS ; Sangkuhl, K ; Bousman, CA ; Leeder, JS ; Llerena, A ; Mueller, DJ ; Ramsey, LB ; Scott, SA ; Skaar, TC ; Caudle, KE ; Klein, TE ; Gaedigk, A (WILEY, 2020-01)
  • Item
    Thumbnail Image
    Peripheral Transcription of NRG-ErbB Pathway Genes Are Upregulated in Treatment-Resistant Schizophrenia
    Mostaid, MS ; Lee, TT ; Chana, G ; Sundram, S ; Weickert, CS ; Pantelis, C ; Everall, I ; Bousman, C (FRONTIERS MEDIA SA, 2017-11-06)
    Investigation of peripheral gene expression patterns of transcripts within the NRG-ErbB signaling pathway, other than neuregulin-1 (NRG1), among patients with schizophrenia and more specifically treatment-resistant schizophrenia (TRS) is limited. The present study built on our previous work demonstrating elevated levels of NRG1 EGFα, EGFβ, and type I(Ig2) containing transcripts in TRS by investigating 11 NRG-ErbB signaling pathway mRNA transcripts (NRG2, ErbB1, ErbB2, ErbB3, ErbB4, PIK3CD, PIK3R3, AKT1, mTOR, P70S6K, eIF4EBP1) in whole blood of TRS patients (N = 71) and healthy controls (N = 57). We also examined the effect of clozapine exposure on transcript levels using cultured peripheral blood mononuclear cells (PBMCs) from 15 healthy individuals. Five transcripts (ErbB3, PIK3CD, AKT1, P70S6K, eIF4EBP1) were significantly elevated in TRS patients compared to healthy controls but only expression of P70S6K (Pcorrected = 0.018), a protein kinase linked to protein synthesis, cell growth, and cell proliferation, survived correction for multiple testing using the Benjamini-Hochberg method. Investigation of clinical factors revealed that ErbB2, PIK3CD, PIK3R3, AKT1, mTOR, and P70S6K expression were negatively correlated with duration of illness. However, no transcript was associated with chlorpromazine equivalent dose or clozapine plasma levels, the latter supported by our in vitro PBMC clozapine exposure experiment. Taken together with previously published NRG1 results, our findings suggest an overall upregulation of transcripts within the NRG-ErbB signaling pathway among individuals with schizophrenia some of which attenuate over duration of illness. Follow-up studies are needed to determine if the observed peripheral upregulation of transcripts within the NRG-ErbB signaling pathway are specific to TRS or are a general blood-based marker of schizophrenia.
  • Item
    Thumbnail Image
    Assessing Neuropsychological Performance in a Migrant Farm Working Colonia in Baja California, Mexico: A Feasibility Study
    Bousman, CA ; Salgado, H ; Hendrix, T ; Fraga, M ; Cherner, M (SPRINGER, 2011-08)
    Neuropsychological impairments (NPI) can lead to difficulties in daily functioning and ultimately contribute to poor health outcomes. However, evidence for the feasibility of NPI assessment in resource-limited settings using tests developed in high literacy/high education cultures is sparse. The main objectives were to: (1) determine the feasibility and appropriateness of conducting neuropsychological assessments among a migrant farm worker population in Baja California, Mexico and (2) preliminary describe neuropsychological test performance in this unique population. A neuropsychological test battery was administered to 21 presumably healthy adults (8 men, 13 women) during a two-day international health services and research collaboration. All but one neuropsychological test (i.e. figure learning) was feasible and appropriate to administer to the study population. Contrary to expectations, participants performed better on verbal rather than nonverbal neuropsychological tests. Results support inclusion of neuropsychological tests into future studies among migrant farm worker populations in Baja California, Mexico.
  • Item
    Thumbnail Image
    Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis
    Chana, G ; Bousman, CA ; Money, TT ; Gibbons, A ; Gillett, P ; Dean, B ; Everall, IP (FRONTIERS MEDIA SA, 2013-06-26)
    Post-mortem brain investigations of schizophrenia have generated swathes of data in the last few decades implicating candidate genes and protein. However, the relation of these findings to peripheral biomarker indicators and symptomatology remain to be elucidated. While biomarkers for disease do not have to be involved with underlying pathophysiology and may be largely indicative of diagnosis or prognosis, the ideal may be a biomarker that is involved in underlying disease processes and which is therefore more likely to change with progression of the illness as well as potentially being more responsive to treatment. One of the main difficulties in conducting biomarker investigations for major psychiatric disorders is the relative inconsistency in clinical diagnoses between disorders such as bipolar and schizophrenia. This has led some researchers to investigate biomarkers associated with core symptoms of these disorders, such as psychosis. The aim of this review is to evaluate the contribution of post-mortem brain investigations to elucidating the pathophysiology pathways involved in schizophrenia and psychosis, with an emphasis on major neurotransmitter systems that have been implicated. This data will then be compared to functional neuroimaging findings as well as findings from blood based gene expression investigations in schizophrenia in order to highlight the relative overlap in pathological processes between these different modalities used to elucidate pathogenesis of schizophrenia. In addition we will cover some recent and exciting findings demonstrating microRNA (miRNA) dysregulation in both the blood and the brain in patients with schizophrenia. These changes are pertinent to the topic due to their known role in post-transcriptional modification of gene expression with the potential to contribute or underlie gene expression changes observed in schizophrenia. Finally, we will discuss how post-mortem studies may aid future biomarker investigations.
  • Item
    Thumbnail Image
    Effects of NRG1 and DAOA genetic variation on transition to psychosis in individuals at ultra-high risk for psychosis
    Bousman, CA ; Yung, AR ; Pantelis, C ; Ellis, JA ; Chavez, RA ; Nelson, B ; Lin, A ; Wood, SJ ; Amminger, GP ; Velakoulis, D ; McGorry, PD ; Everall, IP ; Foley, DL (NATURE PUBLISHING GROUP, 2013-04)
    Prospective studies have suggested genetic variation in the neuregulin 1 (NRG1) and D-amino-acid oxidase activator (DAOA) genes may assist in differentiating high-risk individuals who will or will not transition to psychosis. In a prospective cohort (follow-up=2.4-14.9 years) of 225 individuals at ultra-high risk (UHR) for psychosis, we assessed haplotype-tagging single-nucleotide polymorphisms (htSNPs) spanning NRG1 and DAOA for their association with transition to psychosis, using Cox regression analysis. Two NRG1 htSNPs (rs12155594 and rs4281084) predicted transition to psychosis. Carriers of the rs12155594 T/T or T/C genotype had a 2.34 (95% confidence interval (CI)=1.37-4.00) times greater risk of transition compared with C/C carriers. For every rs4281084 A-allele the risk of transition increased by 1.55 (95% CI=1.05-2.27). For every additional rs4281084-A and/or rs12155594-T allele carried the risk increased ∼1.5-fold, with 71.4% of those carrying a combination of 3 of these alleles transitioning to psychosis. None of the assessed DAOA htSNPs were associated with transition. Our findings suggest NRG1 genetic variation may improve our ability to identify UHR individuals at risk for transition to psychosis.
  • Item
    Thumbnail Image
    The impact of premorbid and current intellect in schizophrenia: cognitive, symptom, and functional outcomes
    Wells, R ; Swaminathan, V ; Sundram, S ; Weinberg, D ; Bruggemann, J ; Jacomb, I ; Cropley, V ; Lenroot, R ; Pereira, AM ; Zalesky, A ; Bousman, C ; Pantelis, C ; Weickert, CS ; Weickert, TW (SPRINGERNATURE, 2015)
    BACKGROUND: Cognitive heterogeneity among people with schizophrenia has been defined on the basis of premorbid and current intelligence quotient (IQ) estimates. In a relatively large, community cohort, we aimed to independently replicate and extend cognitive subtyping work by determining the extent of symptom severity and functional deficits in each group. METHODS: A total of 635 healthy controls and 534 patients with a diagnosis of schizophrenia or schizoaffective disorder were recruited through the Australian Schizophrenia Research Bank. Patients were classified into cognitive subgroups on the basis of the Wechsler Test of Adult Reading (a premorbid IQ estimate) and current overall cognitive abilities into preserved, deteriorated, and compromised groups using both clinical and empirical (k-means clustering) methods. Additional cognitive, functional, and symptom outcomes were compared among the resulting groups. RESULTS: A total of 157 patients (29%) classified as 'preserved' performed within one s.d. of control means in all cognitive domains. Patients classified as 'deteriorated' (n=239, 44%) performed more than one s.d. below control means in all cognitive domains except estimated premorbid IQ and current visuospatial abilities. A separate 138 patients (26%), classified as 'compromised,' performed more than one s.d. below control means in all cognitive domains and displayed greater impairment than other groups on symptom and functional measures. CONCLUSIONS: In the present study, we independently replicated our previous cognitive classifications of people with schizophrenia. In addition, we extended previous work by demonstrating worse functional outcomes and symptom severity in the compromised group.