Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    FRONTOSTRIATAL CONNECTIVITY IN TREATMENT-RESISTANT SCHIZOPHRENIA: RELATIONSHIP TO POSITIVE SYMPTOMS AND COGNITIVE FLEXIBILITY
    Cropley, V ; Ganella, E ; Wannan, C ; Zalesky, A ; Van Rheenen, T ; Bousman, C ; Everall, I ; Fornito, A ; Pantelis, C (OXFORD UNIV PRESS, 2018-04)
  • Item
    Thumbnail Image
    Peripheral Transcription of NRG-ErbB Pathway Genes Are Upregulated in Treatment-Resistant Schizophrenia
    Mostaid, MS ; Lee, TT ; Chana, G ; Sundram, S ; Weickert, CS ; Pantelis, C ; Everall, I ; Bousman, C (FRONTIERS MEDIA SA, 2017-11-06)
    Investigation of peripheral gene expression patterns of transcripts within the NRG-ErbB signaling pathway, other than neuregulin-1 (NRG1), among patients with schizophrenia and more specifically treatment-resistant schizophrenia (TRS) is limited. The present study built on our previous work demonstrating elevated levels of NRG1 EGFα, EGFβ, and type I(Ig2) containing transcripts in TRS by investigating 11 NRG-ErbB signaling pathway mRNA transcripts (NRG2, ErbB1, ErbB2, ErbB3, ErbB4, PIK3CD, PIK3R3, AKT1, mTOR, P70S6K, eIF4EBP1) in whole blood of TRS patients (N = 71) and healthy controls (N = 57). We also examined the effect of clozapine exposure on transcript levels using cultured peripheral blood mononuclear cells (PBMCs) from 15 healthy individuals. Five transcripts (ErbB3, PIK3CD, AKT1, P70S6K, eIF4EBP1) were significantly elevated in TRS patients compared to healthy controls but only expression of P70S6K (Pcorrected = 0.018), a protein kinase linked to protein synthesis, cell growth, and cell proliferation, survived correction for multiple testing using the Benjamini-Hochberg method. Investigation of clinical factors revealed that ErbB2, PIK3CD, PIK3R3, AKT1, mTOR, and P70S6K expression were negatively correlated with duration of illness. However, no transcript was associated with chlorpromazine equivalent dose or clozapine plasma levels, the latter supported by our in vitro PBMC clozapine exposure experiment. Taken together with previously published NRG1 results, our findings suggest an overall upregulation of transcripts within the NRG-ErbB signaling pathway among individuals with schizophrenia some of which attenuate over duration of illness. Follow-up studies are needed to determine if the observed peripheral upregulation of transcripts within the NRG-ErbB signaling pathway are specific to TRS or are a general blood-based marker of schizophrenia.
  • Item
    Thumbnail Image
    Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis
    Chana, G ; Bousman, CA ; Money, TT ; Gibbons, A ; Gillett, P ; Dean, B ; Everall, IP (FRONTIERS MEDIA SA, 2013-06-26)
    Post-mortem brain investigations of schizophrenia have generated swathes of data in the last few decades implicating candidate genes and protein. However, the relation of these findings to peripheral biomarker indicators and symptomatology remain to be elucidated. While biomarkers for disease do not have to be involved with underlying pathophysiology and may be largely indicative of diagnosis or prognosis, the ideal may be a biomarker that is involved in underlying disease processes and which is therefore more likely to change with progression of the illness as well as potentially being more responsive to treatment. One of the main difficulties in conducting biomarker investigations for major psychiatric disorders is the relative inconsistency in clinical diagnoses between disorders such as bipolar and schizophrenia. This has led some researchers to investigate biomarkers associated with core symptoms of these disorders, such as psychosis. The aim of this review is to evaluate the contribution of post-mortem brain investigations to elucidating the pathophysiology pathways involved in schizophrenia and psychosis, with an emphasis on major neurotransmitter systems that have been implicated. This data will then be compared to functional neuroimaging findings as well as findings from blood based gene expression investigations in schizophrenia in order to highlight the relative overlap in pathological processes between these different modalities used to elucidate pathogenesis of schizophrenia. In addition we will cover some recent and exciting findings demonstrating microRNA (miRNA) dysregulation in both the blood and the brain in patients with schizophrenia. These changes are pertinent to the topic due to their known role in post-transcriptional modification of gene expression with the potential to contribute or underlie gene expression changes observed in schizophrenia. Finally, we will discuss how post-mortem studies may aid future biomarker investigations.
  • Item
    Thumbnail Image
    Effects of NRG1 and DAOA genetic variation on transition to psychosis in individuals at ultra-high risk for psychosis
    Bousman, CA ; Yung, AR ; Pantelis, C ; Ellis, JA ; Chavez, RA ; Nelson, B ; Lin, A ; Wood, SJ ; Amminger, GP ; Velakoulis, D ; McGorry, PD ; Everall, IP ; Foley, DL (NATURE PUBLISHING GROUP, 2013-04)
    Prospective studies have suggested genetic variation in the neuregulin 1 (NRG1) and D-amino-acid oxidase activator (DAOA) genes may assist in differentiating high-risk individuals who will or will not transition to psychosis. In a prospective cohort (follow-up=2.4-14.9 years) of 225 individuals at ultra-high risk (UHR) for psychosis, we assessed haplotype-tagging single-nucleotide polymorphisms (htSNPs) spanning NRG1 and DAOA for their association with transition to psychosis, using Cox regression analysis. Two NRG1 htSNPs (rs12155594 and rs4281084) predicted transition to psychosis. Carriers of the rs12155594 T/T or T/C genotype had a 2.34 (95% confidence interval (CI)=1.37-4.00) times greater risk of transition compared with C/C carriers. For every rs4281084 A-allele the risk of transition increased by 1.55 (95% CI=1.05-2.27). For every additional rs4281084-A and/or rs12155594-T allele carried the risk increased ∼1.5-fold, with 71.4% of those carrying a combination of 3 of these alleles transitioning to psychosis. None of the assessed DAOA htSNPs were associated with transition. Our findings suggest NRG1 genetic variation may improve our ability to identify UHR individuals at risk for transition to psychosis.
  • Item
    Thumbnail Image
    The Brain-Derived neurotrophic Factor Val66Met Polymorphism Moderates the effects of childhood abuse on severity of Depressive symptoms in a Time-Dependent Manner
    Webb, C ; Gunn, JM ; Potiriadis, M ; Everall, IP ; Bousman, CA (FRONTIERS MEDIA SA, 2016-08-29)
    Cross-sectional studies have demonstrated that the brain-derived neurotrophic factor (BDNF) Val66Met single-nucleotide polymorphism moderates the association between exposure to negative life events and depression outcomes. Yet, it is currently unclear whether this moderating effect is applicable to positive life events and if the moderating effect is stable over time. To address these gaps in the literature, we examined clinical and BDNF genotypic data from a 5-year prospective cohort of 310 primary care attendees. Primary care attendees were selected based on existence of depressive symptoms at screening. Depressive symptoms were assessed at baseline and annually for 5 years post-baseline using the Primary Care Evaluation of Mental Disorders Patient Health Questionnaire-9 (PHQ-9). Linear mixed models assessed differences in depressive symptom severity over the 5-year follow-up period by BDNF Val66Met and history of life events, both negative and positive. Analysis identified a novel three-way interaction between the BDNF Val66Met polymorphism, history of severe childhood abuse, and time. Post hoc analysis stratified by time showed a two-way interaction between Val66Met and severe childhood abuse at baseline that was not detectable at any other time point. An interaction between Val66Met and positive life events was not detected. Our longitudinal results suggest that the BDNF Val66Met polymorphism moderates the depressive symptom severity experienced by those with a history of severe childhood abuse but does so in a time-dependent manner. Our results further support the notion that gene-environment-depression interactions are dynamic and highlight the importance of longitudinal assessment of these interactions. Given these novel longitudinal findings; replication is required.
  • Item
    Thumbnail Image
    Pathway-wide association study identifies five shared pathways associated with schizophrenia in three ancestral distinct populations
    Liu, C ; Bousman, CA ; Pantelis, C ; Skafidas, E ; Zhang, D ; Yue, W ; Everall, IP (SPRINGERNATURE, 2017-02-21)
    Genome-wide association studies have confirmed the polygenic nature of schizophrenia and suggest that there are hundreds or thousands of alleles associated with increased liability for the disorder. However, the generalizability of any one allelic marker of liability is remarkably low and has bred the notion that schizophrenia may be better conceptualized as a pathway(s) disorder. Here, we empirically tested this notion by conducting a pathway-wide association study (PWAS) encompassing 255 experimentally validated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways among 5033 individuals diagnosed with schizophrenia and 5332 unrelated healthy controls across three distinct ethnic populations; European-American (EA), African-American (AA) and Han Chinese (CH). We identified 103, 74 and 87 pathways associated with schizophrenia liability in the EA, CH and AA populations, respectively. About half of these pathways were uniquely associated with schizophrenia liability in each of the three populations. Five pathways (serotonergic synapse, ubiquitin mediated proteolysis, hedgehog signaling, adipocytokine signaling and renin secretion) were shared across all three populations and the single-nucleotide polymorphism sets representing these five pathways were enriched for single-nucleotide polymorphisms with regulatory function. Our findings provide empirical support for schizophrenia as a pathway disorder and suggest schizophrenia is not only a polygenic but likely also a poly-pathway disorder characterized by both genetic and pathway heterogeneity.
  • Item
    Thumbnail Image
    Serotonin transporter polymorphism (5HTTLPR), severe childhood abuse and depressive symptom trajectories in adulthood
    Nguyen, TB ; Gunn, JM ; Potiriadis, M ; Everall, IP ; Bousman, CA (ROYAL COLL PSYCHIATRISTS, 2015-06)
  • Item
    Thumbnail Image
    Meta-analysis reveals associations between genetic variation in the 5′ and 3′regions of Neuregulin-1 and schizophrenia
    Mostaid, MS ; Mancuso, SG ; Liu, C ; Sundram, S ; Pantelis, C ; Everall, IP ; Bousman, CA (SPRINGERNATURE, 2017-01-17)
    Genetic, post-mortem and neuroimaging studies repeatedly implicate neuregulin-1 (NRG1) as a critical component in the pathophysiology of schizophrenia. Although a number of risk haplotypes along with several genetic polymorphisms in the 5' and 3' regions of NRG1 have been linked with schizophrenia, results have been mixed. To reconcile these conflicting findings, we conducted a meta-analysis examining 22 polymorphisms and two haplotypes in NRG1 among 16 720 cases, 20 449 controls and 2157 family trios. We found significant associations for three polymorphisms (rs62510682, rs35753505 and 478B14-848) at the 5'-end and two (rs2954041 and rs10503929) near the 3'-end of NRG1. Population stratification effects were found for the rs35753505 and 478B14-848(4) polymorphisms. There was evidence of heterogeneity for all significant markers and the findings were robust to publication bias. No significant haplotype associations were found. Our results suggest genetic variation at the 5' and 3' ends of NRG1 are associated with schizophrenia and provide renewed justification for further investigation of NRG1's role in the pathophysiology of schizophrenia.
  • Item
    Thumbnail Image
    Elevated peripheral expression of neuregulin-1 (NRG1) mRNA isoforms in clozapine-treated schizophrenia patients
    Mostaid, MS ; Lee, TT ; Chana, G ; Sundram, S ; Weickert, CS ; Pantelis, C ; Everall, I ; Bousman, C (NATURE PUBLISHING GROUP, 2017-12-11)
    Differential expression of neuregulin-1 (NRG1) mRNA isoforms and proteins has been reported in schizophrenia, primarily in post-mortem brain tissue. In this study, we examined 12 NRG1 SNPs, eight NRG1 mRNA isoforms (type I, type I(Ig2), type II, type III, type IV, EGFα, EGFβ, pan-NRG1) in whole blood, and NRG1-β1 protein in serum of clozapine-treated schizophrenia patients (N = 71) and healthy controls (N = 57). In addition, using cultured peripheral blood mononuclear cells (PBMC) from 15 healthy individuals, we examined the effect of clozapine on NRG1 mRNA isoform and protein expression. We found elevated levels of NRG1 mRNA, specifically the EGFα (P = 0.0175), EGFβ (P = 0.002) and type I(Ig2) (P = 0.023) containing transcripts, but lower NRG1-β1 serum protein levels (P = 0.019) in schizophrenia patients compared to healthy controls. However, adjusting for smoking status attenuated the difference in NRG1-β1 serum levels (P = 0.050). Examination of clinical factors showed NRG1 EGFα (P = 0.02) and EGFβ (P = 0.02) isoform expression was negatively correlated with age of onset. However, we found limited evidence that NRG1 mRNA isoform or protein expression was associated with current chlorpromazine equivalent dose or clozapine plasma levels, the latter corroborated by our PBMC clozapine exposure experiment. Our SNP analysis found no robust expression quantitative trait loci. Our results represent the first comprehensive investigation of NRG1 isoforms and protein expression in the blood of clozapine-treated schizophrenia patients and suggest levels of some NRG1 transcripts are upregulated in those with schizophrenia.
  • Item
    Thumbnail Image
    Schizophrenia genetics in the genome-wide era: a review of Japanese studies
    Kanazawa, T ; Bousman, CA ; Liu, C ; Everall, IP (NATURE PUBLISHING GROUP, 2017-08-30)
    The introduction of the genome-wide association study transformed schizophrenia genetics research and has promoted a genome-wide mindset that has stimulated the development of genomic technology, enabling departures from the traditional candidate gene approach. As result, we have witnessed a decade of major discoveries in schizophrenia genetics and the development of genome-wide approaches to the study of copy number variants. These genomic technologies have primarily been applied in populations of European descent. However, more recently both genome-wide association study and copy number variant studies in Asian populations have begun to emerge. In this invited review, we provide concise summaries of the schizophrenia genome-wide association study and copy number variant literature with specific focus on studies conducted in the Japanese population. When applicable, we compare findings observed in the Japanese population with those found in other populations. We conclude with recommendations for future research in schizophrenia genetics, relevant to Japan and beyond.