Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    FRONTOSTRIATAL CONNECTIVITY IN TREATMENT-RESISTANT SCHIZOPHRENIA: RELATIONSHIP TO POSITIVE SYMPTOMS AND COGNITIVE FLEXIBILITY
    Cropley, V ; Ganella, E ; Wannan, C ; Zalesky, A ; Van Rheenen, T ; Bousman, C ; Everall, I ; Fornito, A ; Pantelis, C (OXFORD UNIV PRESS, 2018-04)
  • Item
    Thumbnail Image
    Depression, fatigue and neurocognitive deficits in chronic hepatitis C
    Yeoh, SW ; Holmes, ACN ; Saling, MM ; Everall, IP ; Nicoll, AJ (SPRINGER, 2018-07)
    Patients with chronic hepatitis C virus (HCV) infection experience a range of symptoms including depression, fatigue and neurocognitive deficits, impairing quality of life. Depression, in particular, may be reactive to increased psychosocial stress, and the physical symptoms of advanced HCV or associated comorbidities. However, even patients at an early stage of HCV infection, with minimal hepatic inflammation or comorbidities, report more depressive symptoms and fatigue than the general population. Similarly, specific neurocognitive deficits occur in early stage HCV infection and are independent of the presence of depression or encephalopathy. Therefore, intracerebral neurobiological changes associated with HCV may potentially explain these symptoms. These changes may arise from infiltration of the brain by peripherally induced cytokines, as well as direct neuropathic effects of HCV viral particles penetrating the blood-brain barrier. These phenomena parallel those reported in human immunodeficiency virus (HIV) infection. HCV-associated intracerebral changes include upregulated inflammatory responses, altered neurotransmitter levels, hormonal dysregulation, and release of neurotoxic substances. These may subsequently lead to abnormal neuronal conduction and function in areas of the brain governing affective responses, emotional processing, motivation, attention and concentration. Although direct-acting antiviral medications lead to high rates of HCV clearance, intracerebral changes may not be subsequently reversed and symptoms of depression, fatigue and neurocognitive deficits may persist. There is an ongoing role for multidisciplinary care and pharmacotherapy to manage these symptoms in HCV patients. Furthermore, there may be opportunities for future therapies to specifically target and ameliorate HCV-associated intracerebral changes.
  • Item
    Thumbnail Image
    Graphene foam as a biocompatible scaffold for culturing human neurons
    D'Abaco, GM ; Mattei, C ; Nasr, BK ; Hudson, EJ ; Alshawaf, AJ ; Chana, G ; Everall, IP ; Nayagam, B ; Dottori, M ; Skafidas, E (ROYAL SOC, 2018-03)
    In this study, we explore the use of electrically active graphene foam as a scaffold for the culture of human-derived neurons. Human embryonic stem cell (hESC)-derived cortical neurons fated as either glutamatergic or GABAergic neuronal phenotypes were cultured on graphene foam. We show that graphene foam is biocompatible for the culture of human neurons, capable of supporting cell viability and differentiation of hESC-derived cortical neurons. Based on the findings, we propose that graphene foam represents a suitable scaffold for engineering neuronal tissue and warrants further investigation as a model for understanding neuronal maturation, function and circuit formation.
  • Item
    Thumbnail Image
    The schizophrenia genetics knowledgebase: a comprehensive update of findings from candidate gene studies
    Liu, C ; Kanazawa, T ; Tian, Y ; Saini, SM ; Mancuso, S ; Mostaid, MS ; Takahashi, A ; Zhang, D ; Zhang, F ; Yu, H ; Shin, HD ; Cheong, HS ; Ikeda, M ; Kubo, M ; Iwata, N ; Woo, S-I ; Yue, W ; Kamatani, Y ; Shi, Y ; Li, Z ; Everall, I ; Pantelis, C ; Bousman, C (NATURE PUBLISHING GROUP, 2019-08-27)
    Over 3000 candidate gene association studies have been performed to elucidate the genetic underpinnings of schizophrenia. However, a comprehensive evaluation of these studies' findings has not been undertaken since the decommissioning of the schizophrenia gene (SzGene) database in 2011. As such, we systematically identified and carried out random-effects meta-analyses for all polymorphisms with four or more independent studies in schizophrenia along with a series of expanded meta-analyses incorporating published and unpublished genome-wide association (GWA) study data. Based on 550 meta-analyses, 11 SNPs in eight linkage disequilibrium (LD) independent loci showed Bonferroni-significant associations with schizophrenia. Expanded meta-analyses identified an additional 10 SNPs, for a total of 21 Bonferroni-significant SNPs in 14 LD-independent loci. Three of these loci (MTHFR, DAOA, ARVCF) had never been implicated by a schizophrenia GWA study. In sum, the present study has provided a comprehensive summary of the current schizophrenia genetics knowledgebase and has made available all the collected data as a resource for the research community.
  • Item
    Thumbnail Image
    Interrogating the Evolutionary Paradox of Schizophrenia: A Novel Framework and Evidence Supporting Recent Negative Selection of Schizophrenia Risk Alleles
    Liu, C ; Everall, I ; Pantelis, C ; Bousman, C (FRONTIERS MEDIA SA, 2019-04-30)
    Schizophrenia is a psychiatric disorder with a worldwide prevalence of ∼1%. The high heritability and reduced fertility among schizophrenia patients have raised an evolutionary paradox: why has negative selection not eliminated schizophrenia associated alleles during evolution? To address this question, we examined evolutionary markers, known as modern-human-specific (MD) sites and archaic-human-specific sites, using existing genome-wide association study (GWAS) data from 34,241 individuals with schizophrenia and 45,604 healthy controls included in the Psychiatric Genomics Consortium (PGC). By testing the distribution of schizophrenia single nucleotide polymorphisms (SNPs) with risk and protective effects in the human-specific sites, we observed a negative selection of risk alleles for schizophrenia in modern humans relative to archaic humans (e.g., Neanderthal and Denisovans). Such findings indicate that risk alleles of schizophrenia have been gradually removed from the modern human genome due to negative selection pressure. This novel evidence contributes to our understanding of the genetic origins of schizophrenia.
  • Item
    Thumbnail Image
    Elevated ubiquitinated proteins in brain and blood of individuals with schizophrenia
    Bousman, CA ; Luza, S ; Mancuso, SG ; Kang, D ; Opazo, CM ; Mostaid, MS ; Cropley, V ; McGorry, P ; Weickert, CS ; Pantelis, C ; Bush, AI ; Everall, IP (NATURE PORTFOLIO, 2019-02-19)
    Dysregulation of the ubiquitin proteasome system (UPS) has been linked to schizophrenia but it is not clear if this dysregulation is detectable in both brain and blood. We examined free mono-ubiquitin, ubiquitinated proteins, catalytic ubiquitination, and proteasome activities in frozen postmortem OFC tissue from 76 (38 schizophrenia, 38 control) matched individuals, as well as erythrocytes from 181 living participants, who comprised 30 individuals with recent onset schizophrenia (mean illness duration = 1 year), 63 individuals with 'treatment-resistant' schizophrenia (mean illness duration = 17 years), and 88 age-matched participants without major psychiatric illness. Ubiquitinated protein levels were elevated in postmortem OFC in schizophrenia compared to controls (p = <0.001, AUC = 74.2%). Similarly, individuals with 'treatment-resistant' schizophrenia had higher levels of ubiquitinated proteins in erythrocytes compared to those with recent onset schizophrenia (p < 0.001, AUC = 65.5%) and controls (p < 0.001, AUC = 69.4%). The results could not be better explained by changes in proteasome activity, demographic, medication, or tissue factors. Our results suggest that ubiquitinated protein formation may be abnormal in both the brain and erythrocytes of those with schizophrenia, particularly in the later stages or specific sub-groups of the illness. A derangement in protein ubiquitination may be linked to pathogenesis or neurotoxicity in schizophrenia, and its manifestation in the blood may have prognostic utility.
  • Item
    Thumbnail Image
    Hippocampal subfields and visuospatial associative memory across stages of schizophrenia-spectrum disorder
    Wannan, CMJ ; Cropley, VL ; Chakravarty, MM ; Van Rheenen, TE ; Mancuso, S ; Bousman, C ; Everall, I ; McGorry, PD ; Pantelis, C ; Bartholomeusz, CF (CAMBRIDGE UNIV PRESS, 2019-10)
    BACKGROUND: While previous studies have identified relationships between hippocampal volumes and memory performance in schizophrenia, these relationships are not apparent in healthy individuals. Further, few studies have examined the role of hippocampal subfields in illness-related memory deficits, and no study has examined potential differences across varying illness stages. The current study aimed to investigate whether individuals with early and established psychosis exhibited differential relationships between visuospatial associative memory and hippocampal subfield volumes. METHODS: Measurements of visuospatial associative memory performance and grey matter volume were obtained from 52 individuals with a chronic schizophrenia-spectrum disorder, 28 youth with recent-onset psychosis, 52 older healthy controls, and 28 younger healthy controls. RESULTS: Both chronic and recent-onset patients had impaired visuospatial associative memory performance, however, only chronic patients showed hippocampal subfield volume loss. Both chronic and recent-onset patients demonstrated relationships between visuospatial associative memory performance and hippocampal subfield volumes in the CA4/dentate gyrus and the stratum that were not observed in older healthy controls. There were no group by volume interactions when chronic and recent-onset patients were compared. CONCLUSIONS: The current study extends the findings of previous studies by identifying particular hippocampal subfields, including the hippocampal stratum layers and the dentate gyrus, that appear to be related to visuospatial associative memory ability in individuals with both chronic and first-episode psychosis.
  • Item
    Thumbnail Image
    Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells
    Alshawaf, AJ ; Viventi, S ; Qiu, W ; D'Abaco, G ; Nayagam, B ; Erlichster, M ; Chana, G ; Everall, I ; Ivanusic, J ; Skafidas, E ; Dottori, M (NATURE PORTFOLIO, 2018-01-12)
    The dorsal root ganglia (DRG) consist of a multitude of sensory neuronal subtypes that function to relay sensory stimuli, including temperature, pressure, pain and position to the central nervous system. Our knowledge of DRG sensory neurons have been predominantly driven by animal studies and considerably less is known about the human DRG. Human embryonic stem cells (hESC) are valuable resource to help close this gap. Our previous studies reported an efficient system for deriving neural crest and DRG sensory neurons from hESC. Here we show that this differentiation system gives rise to heterogeneous populations of sensory neuronal subtypes as demonstrated by phenotypic and functional analyses. Furthermore, using microelectrode arrays the maturation rate of the hESC-derived sensory neuronal cultures was monitored over 8 weeks in culture, showing their spontaneous firing activities starting at about 12 days post-differentiation and reaching maximum firing at about 6 weeks. These studies are highly valuable for developing an in vitro platform to study the diversity of sensory neuronal subtypes found within the human DRG.