Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    No Preview Available
    Genetic variation in glutamatergic genes moderates the effects of childhood adversity on brain volume and IQ in treatment-resistant schizophrenia
    Saini, SM ; Bousman, CA ; Mancuso, SG ; Cropley, V ; Van Rheenen, TE ; Lenroot, RK ; Bruggemann, J ; Weickert, CS ; Weickert, TW ; Sundram, S ; Everall, IP ; Pantelis, C (Nature Portfolio, 2023-09-14)
  • Item
    No Preview Available
    Plasma neurofilament light chain protein is not increased in treatment-resistant schizophrenia and first-degree relatives
    Eratne, D ; Janelidze, S ; Malpas, CB ; Loi, S ; Walterfane, M ; Merritt, A ; Diouf, I ; Blennow, K ; Zetterberg, H ; Cilia, B ; Warman, C ; Bousman, C ; Everall, I ; Zalesky, A ; Jayaram, M ; Thomas, N ; Berkovic, SF ; Hansson, O ; Velakoulis, D ; Pantelis, C ; Santillo, A (SAGE PUBLICATIONS LTD, 2022-10)
    OBJECTIVE: Schizophrenia, a complex psychiatric disorder, is often associated with cognitive, neurological and neuroimaging abnormalities. The processes underlying these abnormalities, and whether a subset of people with schizophrenia have a neuroprogressive or neurodegenerative component to schizophrenia, remain largely unknown. Examining fluid biomarkers of diverse types of neuronal damage could increase our understanding of these processes, as well as potentially provide clinically useful biomarkers, for example with assisting with differentiation from progressive neurodegenerative disorders such as Alzheimer and frontotemporal dementias. METHODS: This study measured plasma neurofilament light chain protein (NfL) using ultrasensitive Simoa technology, to investigate the degree of neuronal injury in a well-characterised cohort of people with treatment-resistant schizophrenia on clozapine (n = 82), compared to first-degree relatives (an at-risk group, n = 37), people with schizophrenia not treated with clozapine (n = 13), and age- and sex-matched controls (n = 59). RESULTS: We found no differences in NfL levels between treatment-resistant schizophrenia (mean NfL, M = 6.3 pg/mL, 95% confidence interval: [5.5, 7.2]), first-degree relatives (siblings, M = 6.7 pg/mL, 95% confidence interval: [5.2, 8.2]; parents, M after adjusting for age = 6.7 pg/mL, 95% confidence interval: [4.7, 8.8]), controls (M = 5.8 pg/mL, 95% confidence interval: [5.3, 6.3]) and not treated with clozapine (M = 4.9 pg/mL, 95% confidence interval: [4.0, 5.8]). Exploratory, hypothesis-generating analyses found weak correlations in treatment-resistant schizophrenia, between NfL and clozapine levels (Spearman's r = 0.258, 95% confidence interval: [0.034, 0.457]), dyslipidaemia (r = 0.280, 95% confidence interval: [0.064, 0.470]) and a negative correlation with weight (r = -0.305, 95% confidence interval: [-0.504, -0.076]). CONCLUSION: Treatment-resistant schizophrenia does not appear to be associated with neuronal, particularly axonal degeneration. Further studies are warranted to investigate the utility of NfL to differentiate treatment-resistant schizophrenia from neurodegenerative disorders such as behavioural variant frontotemporal dementia, and to explore NfL in other stages of schizophrenia such as the prodome and first episode.
  • Item
    No Preview Available
    Disruptions in white matter microstructure associated with impaired visual associative memory in schizophrenia-spectrum illness
    Wannan, CMJ ; Bartholomeusz, CF ; Pantelis, C ; Di Biase, MA ; Syeda, WT ; Chakravarty, MM ; Bousman, CA ; Everall, IP ; McGorry, PD ; Zalesky, A ; Cropley, VL (SPRINGER HEIDELBERG, 2022-09-01)
    Episodic memory ability relies on hippocampal-prefrontal connectivity. However, few studies have examined relationships between memory performance and white matter (WM) microstructure in hippocampal-prefrontal pathways in schizophrenia-spectrum disorder (SSDs). Here, we investigated these relationships in individuals with first-episode psychosis (FEP) and chronic schizophrenia-spectrum disorders (SSDs) using tractography analysis designed to interrogate the microstructure of WM tracts in the hippocampal-prefrontal pathway. Measures of WM microstructure (fractional anisotropy [FA], radial diffusivity [RD], and axial diffusivity [AD]) were obtained for 47 individuals with chronic SSDs, 28 FEP individuals, 52 older healthy controls, and 27 younger healthy controls. Tractography analysis was performed between the hippocampus and three targets involved in hippocampal-prefrontal connectivity (thalamus, amygdala, nucleus accumbens). Measures of WM microstructure were then examined in relation to episodic memory performance separately across each group. Both those with FEP and chronic SSDs demonstrated impaired episodic memory performance. However, abnormal WM microstructure was only observed in individuals with chronic SSDs. Abnormal WM microstructure in the hippocampal-thalamic pathway in the right hemisphere was associated with poorer memory performance in individuals with chronic SSDs. These findings suggest that disruptions in WM microstructure in the hippocampal-prefrontal pathway may contribute to memory impairments in individuals with chronic SSDs but not FEP.
  • Item
    Thumbnail Image
    Cortico-cognition coupling in treatment resistant schizophrenia
    Syeda, WT ; Wannan, CMJ ; Merritt, AH ; Raghava, JM ; Jayaram, M ; Velakoulis, D ; Kristensen, TD ; Soldatos, RF ; Tonissen, S ; Thomas, N ; Ambrosen, KS ; Sorensen, ME ; Fagerlund, B ; Rostrup, E ; Glenthoj, BY ; Skafidas, E ; Bousman, CA ; Johnston, LA ; Everall, I ; Ebdrup, BH ; Pantelis, C (ELSEVIER SCI LTD, 2022)
    BACKGROUND: Brain structural alterations and cognitive dysfunction are independent predictors for poor clinical outcome in schizophrenia, and the associations between these domains remains unclear. We employed a novel, multiblock partial least squares correlation (MB-PLS-C) technique and investigated multivariate cortico-cognitive patterns in patients with treatment-resistant schizophrenia (TRS) and matched healthy controls (HC). METHOD: Forty-one TRS patients (age 38.5 ± 9.1, 30 males (M)), and 45 HC (age 40.2 ± 10.6, 29 M) underwent 3T structural MRI. Volumes of 68 brain regions and seven variables from CANTAB covering memory and executive domains were included. Univariate group differences were assessed, followed by the MB-PLS-C analyses to identify group-specific multivariate patterns of cortico-cognitive coupling. Supplementary three-group analyses, which included 23 non-affected first-degree relatives (NAR), were also conducted. RESULTS: Univariate tests demonstrated that TRS patients showed impairments in all seven cognitive tasks and volume reductions in 12 cortical regions following Bonferroni correction. The MB-PLS-C analyses revealed two significant latent variables (LVs) explaining > 90% of the sum-of-squares variance. LV1 explained 78.86% of the sum-of-squares variance, describing a shared, widespread structure-cognitive pattern relevant to both TRS patients and HCs. In contrast, LV2 (13.47% of sum-of-squares variance explained) appeared specific to TRS and comprised a differential cortico-cognitive pattern including frontal and temporal lobes as well as paired associates learning (PAL) and intra-extra dimensional set shifting (IED). Three-group analyses also identified two significant LVs, with NARs more closely resembling healthy controls than TRS patients. CONCLUSIONS: MB-PLS-C analyses identified multivariate brain structural-cognitive patterns in the latent space that may provide a TRS signature.
  • Item
    Thumbnail Image
    S187. EXPLORING NEURODEVELOPMENTAL AND FAMILIAL ORIGINS OF NEUROLOGICAL SOFT SIGNS IN SCHIZOPHRENIA
    Cooper, R ; Van Rheenen, T ; Zalesky, A ; Wannan, C ; Wang, Y ; Bousman, C ; Everall, I ; Pantelis, C ; Cropley, V (Oxford University Press (OUP), 2020-05-18)
    Abstract Background The neurodevelopmental hypothesis is the most widely regarded framework for understanding the development of schizophrenia. One of the most commonly cited pieces of evidence for this theory is the presence of neurological soft signs (NSS) in individuals prior to the onset of psychosis. Increased NSS is also reported in unaffected individuals with a family history of schizophrenia, suggesting that NSS may also have a familial component. Although much research has implicated reduced grey matter volume (GMV) in association with these signs, a subcomponent of volume, known as gyrification, has been poorly researched. Given that gyrification develops predominantly in prenatal life it may be particularly susceptible to a neurodevelopmental abnormality. The aims of this study were to investigate the neurodevelopmental and familial underpinnings of NSS in schizophrenia. Specifically, we examined the brain structural correlates, at both the level of GMV and gyrification, of NSS in individuals with schizophrenia, their unaffected relatives and healthy controls. We aimed to determine whether gyrification better predicted NSS severity than GMV, and whether the relationship between brain structure and NSS were present in a step-wise manner across the diagnostic groups. Methods The sample consisted of individuals with schizophrenia (N=66), their unaffected relatives (N=27) and healthy controls (N=53). NSS was assessed with the Neurological Evaluation Scale (NES), and GMV and gyrification were extracted from MRI using the FreeSurfer imaging suite. A series of analysis of covariance were used to compare NES scores and brain measures between the groups. Separate linear regression analyses were used to assess whether whole-brain GMV and gyrification predicted NES above a covariate-only model. Moderation analyses were used to assess whether the relationship between NES and brain structure were different between the diagnostic groups. Error control was achieved with a false discovery rate of 5%. Results NES was significantly higher in schizophrenia patients than relatives (p<.0001), who were in turn significantly higher than controls (p=.034). With the groups combined, lower GMV (p<.0001), as well as lower gyrification (p=.004), predicted higher NES above a covariate-only model. GMV predicted greater variance in NSS in comparison to gyrification, explaining an additional 20.3% of the variance in NES, in comparison to the additional 5.5% of variance in NES explained by gyrification. Diagnostic group moderated the association between GMV and NES (p=.019), but not between gyrification and NES (p=.245). Follow-up tests revealed that lower GMV was associated with higher NES in schizophrenia (t=-4.5, p<.0001) and relatives (t=-2.5, p=.015) but not controls (t=-1.9, p=.055). Discussion Our findings indicate that NSS is heritable, being present in patients with established schizophrenia, and to a lesser extent, in unaffected relatives. Consistent with previous research, we revealed that GMV predicted NSS severity, suggesting that abnormalities in volume may underlie these signs. We additionally found that gyrification predicted, although to a lesser extent than volume, NSS severity, providing some support for schizophrenia being of possible neurodevelopmental origin. Evidence for an association between volume and NSS in relatives, whom are not confounded by illness-related factors such as medication and symptom severity, indicates a familial contribution to the neural underpinnings of NSS. Together, our study suggests that there may be various aetiological pathways underlying soft signs across the schizophrenia diathesis, some that may be of familial or neurodevelopmental origin.
  • Item
    No Preview Available
    Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science
    Holmes, EA ; O'Connor, RC ; Perry, VH ; Tracey, I ; Wessely, S ; Arseneault, L ; Ballard, C ; Christensen, H ; Silver, RC ; Everall, I ; Ford, T ; John, A ; Kabir, T ; King, K ; Madan, I ; Michie, S ; Przybylski, AK ; Shafran, R ; Sweeney, A ; Worthman, CM ; Yardley, L ; Cowan, K ; Cope, C ; Hotopf, M ; Bullmore, E (ELSEVIER SCI LTD, 2020-06)
    The coronavirus disease 2019 (COVID-19) pandemic is having a profound effect on all aspects of society, including mental health and physical health. We explore the psychological, social, and neuroscientific effects of COVID-19 and set out the immediate priorities and longer-term strategies for mental health science research. These priorities were informed by surveys of the public and an expert panel convened by the UK Academy of Medical Sciences and the mental health research charity, MQ: Transforming Mental Health, in the first weeks of the pandemic in the UK in March, 2020. We urge UK research funding agencies to work with researchers, people with lived experience, and others to establish a high level coordination group to ensure that these research priorities are addressed, and to allow new ones to be identified over time. The need to maintain high-quality research standards is imperative. International collaboration and a global perspective will be beneficial. An immediate priority is collecting high-quality data on the mental health effects of the COVID-19 pandemic across the whole population and vulnerable groups, and on brain function, cognition, and mental health of patients with COVID-19. There is an urgent need for research to address how mental health consequences for vulnerable groups can be mitigated under pandemic conditions, and on the impact of repeated media consumption and health messaging around COVID-19. Discovery, evaluation, and refinement of mechanistically driven interventions to address the psychological, social, and neuroscientific aspects of the pandemic are required. Rising to this challenge will require integration across disciplines and sectors, and should be done together with people with lived experience. New funding will be required to meet these priorities, and it can be efficiently leveraged by the UK's world-leading infrastructure. This Position Paper provides a strategy that may be both adapted for, and integrated with, research efforts in other countries.
  • Item
    Thumbnail Image
    Invited Review: The spectrum of neuropathology in COVID-19
    Al-Sarraj, S ; Troakes, C ; Hanley, B ; Osborn, M ; Richardson, MP ; Hotopf, M ; Bullmore, E ; Everall, IP (WILEY, 2021-02)
    There is increasing evidence that patients with Coronavirus disease 19 (COVID-19) present with neurological and psychiatric symptoms. Anosmia, hypogeusia, headache, nausea and altered consciousness are commonly described, although there are emerging clinical reports of more serious and specific conditions such as acute cerebrovascular accident, encephalitis and demyelinating disease. Whether these presentations are directly due to viral invasion of the central nervous system (CNS) or caused by indirect mechanisms has yet to be established. Neuropathological examination of brain tissue at autopsy will be essential to establish the neuro-invasive potential of the SARS-CoV-2 virus but, to date, there have been few detailed studies. The pathological changes in the brain probably represent a combination of direct cytopathic effects mediated by SARS-CoV-2 replication or indirect effects due to respiratory failure, injurious cytokine reaction, reduced immune response and cerebrovascular accidents induced by viral infection. Further large-scale molecular and cellular investigations are warranted to clarify the neuropathological correlates of the neurological and psychiatric features seen clinically in COVID-19. In this review, we summarize the current reports of neuropathological examination in COVID-19 patients, in addition to our own experience, and discuss their contribution to the understanding of CNS involvement in this disease.
  • Item
    Thumbnail Image
    Mental health services for infectious disease outbreaks including COVID-19: a rapid systematic review
    Yue, J-L ; Yan, W ; Sun, Y-K ; Yuan, K ; Su, S-Z ; Han, Y ; Ravindran, AV ; Kosten, T ; Everall, I ; Davey, CG ; Bullmore, E ; Kawakami, N ; Barbui, C ; Thornicroft, G ; Lund, C ; Lin, X ; Liu, L ; Shi, L ; Shi, J ; Ran, M-S ; Bao, Y-P ; Lu, L (CAMBRIDGE UNIV PRESS, 2020-11)
    The upsurge in the number of people affected by the COVID-19 is likely to lead to increased rates of emotional trauma and mental illnesses. This article systematically reviewed the available data on the benefits of interventions to reduce adverse mental health sequelae of infectious disease outbreaks, and to offer guidance for mental health service responses to infectious disease pandemic. PubMed, Web of Science, Embase, PsycINFO, WHO Global Research Database on infectious disease, and the preprint server medRxiv were searched. Of 4278 reports identified, 32 were included in this review. Most articles of psychological interventions were implemented to address the impact of COVID-19 pandemic, followed by Ebola, SARS, and MERS for multiple vulnerable populations. Increasing mental health literacy of the public is vital to prevent the mental health crisis under the COVID-19 pandemic. Group-based cognitive behavioral therapy, psychological first aid, community-based psychosocial arts program, and other culturally adapted interventions were reported as being effective against the mental health impacts of COVID-19, Ebola, and SARS. Culturally-adapted, cost-effective, and accessible strategies integrated into the public health emergency response and established medical systems at the local and national levels are likely to be an effective option to enhance mental health response capacity for the current and for future infectious disease outbreaks. Tele-mental healthcare services were key central components of stepped care for both infectious disease outbreak management and routine support; however, the usefulness and limitations of remote health delivery should also be recognized.