Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    No Preview Available
    Plasma neurofilament light chain protein is not increased in treatment-resistant schizophrenia and first-degree relatives
    Eratne, D ; Janelidze, S ; Malpas, CB ; Loi, S ; Walterfane, M ; Merritt, A ; Diouf, I ; Blennow, K ; Zetterberg, H ; Cilia, B ; Warman, C ; Bousman, C ; Everall, I ; Zalesky, A ; Jayaram, M ; Thomas, N ; Berkovic, SF ; Hansson, O ; Velakoulis, D ; Pantelis, C ; Santillo, A (SAGE PUBLICATIONS LTD, 2022-10)
    OBJECTIVE: Schizophrenia, a complex psychiatric disorder, is often associated with cognitive, neurological and neuroimaging abnormalities. The processes underlying these abnormalities, and whether a subset of people with schizophrenia have a neuroprogressive or neurodegenerative component to schizophrenia, remain largely unknown. Examining fluid biomarkers of diverse types of neuronal damage could increase our understanding of these processes, as well as potentially provide clinically useful biomarkers, for example with assisting with differentiation from progressive neurodegenerative disorders such as Alzheimer and frontotemporal dementias. METHODS: This study measured plasma neurofilament light chain protein (NfL) using ultrasensitive Simoa technology, to investigate the degree of neuronal injury in a well-characterised cohort of people with treatment-resistant schizophrenia on clozapine (n = 82), compared to first-degree relatives (an at-risk group, n = 37), people with schizophrenia not treated with clozapine (n = 13), and age- and sex-matched controls (n = 59). RESULTS: We found no differences in NfL levels between treatment-resistant schizophrenia (mean NfL, M = 6.3 pg/mL, 95% confidence interval: [5.5, 7.2]), first-degree relatives (siblings, M = 6.7 pg/mL, 95% confidence interval: [5.2, 8.2]; parents, M after adjusting for age = 6.7 pg/mL, 95% confidence interval: [4.7, 8.8]), controls (M = 5.8 pg/mL, 95% confidence interval: [5.3, 6.3]) and not treated with clozapine (M = 4.9 pg/mL, 95% confidence interval: [4.0, 5.8]). Exploratory, hypothesis-generating analyses found weak correlations in treatment-resistant schizophrenia, between NfL and clozapine levels (Spearman's r = 0.258, 95% confidence interval: [0.034, 0.457]), dyslipidaemia (r = 0.280, 95% confidence interval: [0.064, 0.470]) and a negative correlation with weight (r = -0.305, 95% confidence interval: [-0.504, -0.076]). CONCLUSION: Treatment-resistant schizophrenia does not appear to be associated with neuronal, particularly axonal degeneration. Further studies are warranted to investigate the utility of NfL to differentiate treatment-resistant schizophrenia from neurodegenerative disorders such as behavioural variant frontotemporal dementia, and to explore NfL in other stages of schizophrenia such as the prodome and first episode.
  • Item
    No Preview Available
    Whole-genome sequencing analysis of clozapine-induced myocarditis
    Narang, A ; Lacaze, P ; Ronaldson, KJ ; McNeil, JJ ; Jayaram, M ; Thomas, N ; Sellmer, R ; Crockford, D ; Stowe, R ; Greenway, SC ; Pantelis, C ; Bousman, CA (SPRINGERNATURE, 2022-05)
    One of the concerns limiting the use of clozapine in schizophrenia treatment is the risk of rare but potentially fatal myocarditis. Our previous genome-wide association study and human leucocyte antigen analyses identified putative loci associated with clozapine-induced myocarditis. However, the contribution of DNA variation in cytochrome P450 genes, copy number variants and rare deleterious variants have not been investigated. We explored these unexplored classes of DNA variation using whole-genome sequencing data from 25 cases with clozapine-induced myocarditis and 25 demographically-matched clozapine-tolerant control subjects. We identified 15 genes based on rare variant gene-burden analysis (MLLT6, CADPS, TACC2, L3MBTL4, NPY, SLC25A21, PARVB, GPR179, ACAD9, NOL8, C5orf33, FAM127A, AFDN, SLC6A11, PXDN) nominally associated (p < 0.05) with clozapine-induced myocarditis. Of these genes, 13 were expressed in human myocardial tissue. Although independent replication of these findings is required, our study provides preliminary insights into the potential role of rare genetic variants in susceptibility to clozapine-induced myocarditis.
  • Item
    No Preview Available
    Disruptions in white matter microstructure associated with impaired visual associative memory in schizophrenia-spectrum illness
    Wannan, CMJ ; Bartholomeusz, CF ; Pantelis, C ; Di Biase, MA ; Syeda, WT ; Chakravarty, MM ; Bousman, CA ; Everall, IP ; McGorry, PD ; Zalesky, A ; Cropley, VL (SPRINGER HEIDELBERG, 2022-09-01)
    Episodic memory ability relies on hippocampal-prefrontal connectivity. However, few studies have examined relationships between memory performance and white matter (WM) microstructure in hippocampal-prefrontal pathways in schizophrenia-spectrum disorder (SSDs). Here, we investigated these relationships in individuals with first-episode psychosis (FEP) and chronic schizophrenia-spectrum disorders (SSDs) using tractography analysis designed to interrogate the microstructure of WM tracts in the hippocampal-prefrontal pathway. Measures of WM microstructure (fractional anisotropy [FA], radial diffusivity [RD], and axial diffusivity [AD]) were obtained for 47 individuals with chronic SSDs, 28 FEP individuals, 52 older healthy controls, and 27 younger healthy controls. Tractography analysis was performed between the hippocampus and three targets involved in hippocampal-prefrontal connectivity (thalamus, amygdala, nucleus accumbens). Measures of WM microstructure were then examined in relation to episodic memory performance separately across each group. Both those with FEP and chronic SSDs demonstrated impaired episodic memory performance. However, abnormal WM microstructure was only observed in individuals with chronic SSDs. Abnormal WM microstructure in the hippocampal-thalamic pathway in the right hemisphere was associated with poorer memory performance in individuals with chronic SSDs. These findings suggest that disruptions in WM microstructure in the hippocampal-prefrontal pathway may contribute to memory impairments in individuals with chronic SSDs but not FEP.
  • Item
    Thumbnail Image
    Cortico-cognition coupling in treatment resistant schizophrenia
    Syeda, WT ; Wannan, CMJ ; Merritt, AH ; Raghava, JM ; Jayaram, M ; Velakoulis, D ; Kristensen, TD ; Soldatos, RF ; Tonissen, S ; Thomas, N ; Ambrosen, KS ; Sorensen, ME ; Fagerlund, B ; Rostrup, E ; Glenthoj, BY ; Skafidas, E ; Bousman, CA ; Johnston, LA ; Everall, I ; Ebdrup, BH ; Pantelis, C (ELSEVIER SCI LTD, 2022)
    BACKGROUND: Brain structural alterations and cognitive dysfunction are independent predictors for poor clinical outcome in schizophrenia, and the associations between these domains remains unclear. We employed a novel, multiblock partial least squares correlation (MB-PLS-C) technique and investigated multivariate cortico-cognitive patterns in patients with treatment-resistant schizophrenia (TRS) and matched healthy controls (HC). METHOD: Forty-one TRS patients (age 38.5 ± 9.1, 30 males (M)), and 45 HC (age 40.2 ± 10.6, 29 M) underwent 3T structural MRI. Volumes of 68 brain regions and seven variables from CANTAB covering memory and executive domains were included. Univariate group differences were assessed, followed by the MB-PLS-C analyses to identify group-specific multivariate patterns of cortico-cognitive coupling. Supplementary three-group analyses, which included 23 non-affected first-degree relatives (NAR), were also conducted. RESULTS: Univariate tests demonstrated that TRS patients showed impairments in all seven cognitive tasks and volume reductions in 12 cortical regions following Bonferroni correction. The MB-PLS-C analyses revealed two significant latent variables (LVs) explaining > 90% of the sum-of-squares variance. LV1 explained 78.86% of the sum-of-squares variance, describing a shared, widespread structure-cognitive pattern relevant to both TRS patients and HCs. In contrast, LV2 (13.47% of sum-of-squares variance explained) appeared specific to TRS and comprised a differential cortico-cognitive pattern including frontal and temporal lobes as well as paired associates learning (PAL) and intra-extra dimensional set shifting (IED). Three-group analyses also identified two significant LVs, with NARs more closely resembling healthy controls than TRS patients. CONCLUSIONS: MB-PLS-C analyses identified multivariate brain structural-cognitive patterns in the latent space that may provide a TRS signature.
  • Item
    Thumbnail Image
    Genome-wide association analyses of symptom severity among clozapine-treated patients with schizophrenia spectrum disorders
    Okhuijsen-Pfeifer, C ; van der Horst, MZ ; Bousman, CA ; Lin, B ; van Eijk, KR ; Ripke, S ; Ayhan, Y ; Babaoglu, MO ; Bak, M ; Alink, W ; van Beek, H ; Beld, E ; Bouhuis, A ; Edlinger, M ; Erdogan, IM ; Ertugrul, A ; Yoca, G ; Everall, P ; Goerlitz, T ; Grootens, KP ; Gutwinski, S ; Hallikainen, T ; Jeger-Land, E ; de Koning, M ; Lahteenvuo, M ; Legge, SE ; Leucht, S ; Morgenroth, C ; Muderrisoglu, A ; Narang, A ; Pantelis, C ; Pardinas, AF ; Oviedo-Salcedo, T ; Schneider-Thoma, J ; Schreiter, S ; Repo-Tiihonen, E ; Tuppurainen, H ; Veereschild, M ; Veerman, S ; de Vos, M ; Wagner, E ; Cohen, D ; Bogers, JPAM ; Walters, JTR ; Yagcioglu, EA ; Tiihonen, J ; Hasan, A ; Luykx, JJ (SPRINGERNATURE, 2022-04-07)
    Clozapine is the most effective antipsychotic for patients with treatment-resistant schizophrenia. However, response is highly variable and possible genetic underpinnings of this variability remain unknown. Here, we performed polygenic risk score (PRS) analyses to estimate the amount of variance in symptom severity among clozapine-treated patients explained by PRSs (R2) and examined the association between symptom severity and genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activity. Genome-wide association (GWA) analyses were performed to explore loci associated with symptom severity. A multicenter cohort of 804 patients (after quality control N = 684) with schizophrenia spectrum disorder treated with clozapine were cross-sectionally assessed using the Positive and Negative Syndrome Scale and/or the Clinical Global Impression-Severity (CGI-S) scale. GWA and PRS regression analyses were conducted. Genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activities were calculated. Schizophrenia-PRS was most significantly and positively associated with low symptom severity (p = 1.03 × 10-3; R2 = 1.85). Cross-disorder-PRS was also positively associated with lower CGI-S score (p = 0.01; R2 = 0.81). Compared to the lowest tertile, patients in the highest schizophrenia-PRS tertile had 1.94 times (p = 6.84×10-4) increased probability of low symptom severity. Higher genotype-predicted CYP2C19 enzyme activity was independently associated with lower symptom severity (p = 8.44×10-3). While no locus surpassed the genome-wide significance threshold, rs1923778 within NFIB showed a suggestive association (p = 3.78×10-7) with symptom severity. We show that high schizophrenia-PRS and genotype-predicted CYP2C19 enzyme activity are independently associated with lower symptom severity among individuals treated with clozapine. Our findings open avenues for future pharmacogenomic projects investigating the potential of PRS and genotype-predicted CYP-activity in schizophrenia.
  • Item
    Thumbnail Image
    S187. EXPLORING NEURODEVELOPMENTAL AND FAMILIAL ORIGINS OF NEUROLOGICAL SOFT SIGNS IN SCHIZOPHRENIA
    Cooper, R ; Van Rheenen, T ; Zalesky, A ; Wannan, C ; Wang, Y ; Bousman, C ; Everall, I ; Pantelis, C ; Cropley, V (Oxford University Press (OUP), 2020-05-18)
    Abstract Background The neurodevelopmental hypothesis is the most widely regarded framework for understanding the development of schizophrenia. One of the most commonly cited pieces of evidence for this theory is the presence of neurological soft signs (NSS) in individuals prior to the onset of psychosis. Increased NSS is also reported in unaffected individuals with a family history of schizophrenia, suggesting that NSS may also have a familial component. Although much research has implicated reduced grey matter volume (GMV) in association with these signs, a subcomponent of volume, known as gyrification, has been poorly researched. Given that gyrification develops predominantly in prenatal life it may be particularly susceptible to a neurodevelopmental abnormality. The aims of this study were to investigate the neurodevelopmental and familial underpinnings of NSS in schizophrenia. Specifically, we examined the brain structural correlates, at both the level of GMV and gyrification, of NSS in individuals with schizophrenia, their unaffected relatives and healthy controls. We aimed to determine whether gyrification better predicted NSS severity than GMV, and whether the relationship between brain structure and NSS were present in a step-wise manner across the diagnostic groups. Methods The sample consisted of individuals with schizophrenia (N=66), their unaffected relatives (N=27) and healthy controls (N=53). NSS was assessed with the Neurological Evaluation Scale (NES), and GMV and gyrification were extracted from MRI using the FreeSurfer imaging suite. A series of analysis of covariance were used to compare NES scores and brain measures between the groups. Separate linear regression analyses were used to assess whether whole-brain GMV and gyrification predicted NES above a covariate-only model. Moderation analyses were used to assess whether the relationship between NES and brain structure were different between the diagnostic groups. Error control was achieved with a false discovery rate of 5%. Results NES was significantly higher in schizophrenia patients than relatives (p&lt;.0001), who were in turn significantly higher than controls (p=.034). With the groups combined, lower GMV (p&lt;.0001), as well as lower gyrification (p=.004), predicted higher NES above a covariate-only model. GMV predicted greater variance in NSS in comparison to gyrification, explaining an additional 20.3% of the variance in NES, in comparison to the additional 5.5% of variance in NES explained by gyrification. Diagnostic group moderated the association between GMV and NES (p=.019), but not between gyrification and NES (p=.245). Follow-up tests revealed that lower GMV was associated with higher NES in schizophrenia (t=-4.5, p&lt;.0001) and relatives (t=-2.5, p=.015) but not controls (t=-1.9, p=.055). Discussion Our findings indicate that NSS is heritable, being present in patients with established schizophrenia, and to a lesser extent, in unaffected relatives. Consistent with previous research, we revealed that GMV predicted NSS severity, suggesting that abnormalities in volume may underlie these signs. We additionally found that gyrification predicted, although to a lesser extent than volume, NSS severity, providing some support for schizophrenia being of possible neurodevelopmental origin. Evidence for an association between volume and NSS in relatives, whom are not confounded by illness-related factors such as medication and symptom severity, indicates a familial contribution to the neural underpinnings of NSS. Together, our study suggests that there may be various aetiological pathways underlying soft signs across the schizophrenia diathesis, some that may be of familial or neurodevelopmental origin.
  • Item
    No Preview Available
    Brain morphology is differentially impacted by peripheral cytokines in schizophrenia-spectrum disorder
    Laskaris, L ; Mancuso, S ; Shannon Weickert, C ; Zalesky, A ; Chana, G ; Wannan, C ; Bousman, C ; Baune, BT ; McGorry, P ; Pantelis, C ; Cropley, VL (Elsevier, 2021)
    Deficits in brain morphology are one of the most widely replicated neuropathological features in schizophrenia-spectrum disorder (SSD), although their biological underpinnings remain unclear. Despite the existence of hypotheses by which peripheral inflammation may impact brain structure, few studies have examined this relationship in SSD. This study aimed to establish the relationship between peripheral markers of inflammation and brain morphology and determine whether such relationships differed across healthy controls and individuals with first episode psychosis (FEP) and chronic schizophrenia. A panel of 13 pro- and anti-inflammatory cytokines were quantified from serum in 175 participants [n = 84 Healthy Controls (HC), n = 40 FEP, n = 51 Chronic SCZ]. We first performed a series of permutation tests to identify the cytokines most consistently associated with brain structural regions. Using moderation analysis, we then determined the extent to which individual variation in select cytokines, and their interaction with diagnostic status, predicted variation in brain structure. We found significant interactions between cytokine level and diagnosis on brain structure. Diagnostic status significantly moderated the relationship of IFNγ, IL4, IL5 and IL13 with frontal thickness, and of IFNγ and IL5 and total cortical volume. Specifically, frontal thickness was positively associated with IFNγ, IL4, IL5 and IL13 cytokine levels in the healthy control group, whereas pro-inflammatory cytokines IFNγ and IL5 were associated with lower total cortical volume in the FEP group. Our findings suggest that while there were no relationships detected in chronic schizophrenia, the relationship between peripheral inflammatory markers and select brain regions are differentially impacted in FEP and healthy controls. Longitudinal investigations are required to determine whether the relationship between brain structure and peripheral inflammation changes over time.
  • Item
    Thumbnail Image
    Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort
    Lv, J ; Di Biase, M ; Cash, RFH ; Cocchi, L ; Cropley, VL ; Klauser, P ; Tian, Y ; Bayer, J ; Schmaal, L ; Cetin-Karayumak, S ; Rathi, Y ; Pasternak, O ; Bousman, C ; Pantelis, C ; Calamante, F ; Zalesky, A (SPRINGERNATURE, 2021-07)
    The heterogeneity of schizophrenia has defied efforts to derive reproducible and definitive anatomical maps of structural brain changes associated with the disorder. We aimed to map deviations from normative ranges of brain structure for individual patients and evaluate whether the loci of individual deviations recapitulated group-average brain maps of schizophrenia pathology. For each of 48 white matter tracts and 68 cortical regions, normative percentiles of variation in fractional anisotropy (FA) and cortical thickness (CT) were established using diffusion-weighted and structural MRI from healthy adults (n = 195). Individuals with schizophrenia (n = 322) were classified as either within the normative range for healthy individuals of the same age and sex (5-95% percentiles), infra-normal (<5% percentile) or supra-normal (>95% percentile). Repeating this classification for each tract and region yielded a deviation map for each individual. Compared to the healthy comparison group, the schizophrenia group showed widespread reductions in FA and CT, involving virtually all white matter tracts and cortical regions. Paradoxically, however, no more than 15-20% of patients deviated from the normative range for any single tract or region. Furthermore, 79% of patients showed infra-normal deviations for at least one locus (healthy individuals: 59 ± 2%, p < 0.001). Thus, while infra-normal deviations were common among patients, their anatomical loci were highly inconsistent between individuals. Higher polygenic risk for schizophrenia associated with a greater number of regions with infra-normal deviations in CT (r = -0.17, p = 0.006). We conclude that anatomical loci of schizophrenia-related changes are highly heterogeneous across individuals to the extent that group-consensus pathological maps are not representative of most individual patients. Normative modeling can aid in parsing schizophrenia heterogeneity and guiding personalized interventions.