Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 23
  • Item
    Thumbnail Image
    Genetic Influences on Cost-Efficient Organization of Human Cortical Functional Networks
    Fornito, A ; Zalesky, A ; Bassett, DS ; Meunier, D ; Ellison-Wright, I ; Yuecel, M ; Wood, SJ ; Shaw, K ; O'Connor, J ; Nertney, D ; Mowry, BJ ; Pantelis, C ; Bullmore, ET (SOC NEUROSCIENCE, 2011-03-02)
    The human cerebral cortex is a complex network of functionally specialized regions interconnected by axonal fibers, but the organizational principles underlying cortical connectivity remain unknown. Here, we report evidence that one such principle for functional cortical networks involves finding a balance between maximizing communication efficiency and minimizing connection cost, referred to as optimization of network cost-efficiency. We measured spontaneous fluctuations of the blood oxygenation level-dependent signal using functional magnetic resonance imaging in healthy monozygotic (16 pairs) and dizygotic (13 pairs) twins and characterized cost-efficient properties of brain network functional connectivity between 1041 distinct cortical regions. At the global network level, 60% of the interindividual variance in cost-efficiency of cortical functional networks was attributable to additive genetic effects. Regionally, significant genetic effects were observed throughout the cortex in a largely bilateral pattern, including bilateral posterior cingulate and medial prefrontal cortices, dorsolateral prefrontal and superior parietal cortices, and lateral temporal and inferomedial occipital regions. Genetic effects were stronger for cost-efficiency than for other metrics considered, and were more clearly significant in functional networks operating in the 0.09-0.18 Hz frequency interval than at higher or lower frequencies. These findings are consistent with the hypothesis that brain networks evolved to satisfy competitive selection criteria of maximizing efficiency and minimizing cost, and that optimization of network cost-efficiency represents an important principle for the brain's functional organization.
  • Item
    Thumbnail Image
    FRONTOSTRIATAL CONNECTIVITY IN TREATMENT-RESISTANT SCHIZOPHRENIA: RELATIONSHIP TO POSITIVE SYMPTOMS AND COGNITIVE FLEXIBILITY
    Cropley, V ; Ganella, E ; Wannan, C ; Zalesky, A ; Van Rheenen, T ; Bousman, C ; Everall, I ; Fornito, A ; Pantelis, C (OXFORD UNIV PRESS, 2018-04)
  • Item
    Thumbnail Image
    White Matter Alterations Between Brain Network Hubs Underlie Processing Speed Impairment in Patients With Schizophrenia.
    Klauser, P ; Cropley, VL ; Baumann, PS ; Lv, J ; Steullet, P ; Dwir, D ; Alemán-Gómez, Y ; Bach Cuadra, M ; Cuenod, M ; Do, KQ ; Conus, P ; Pantelis, C ; Fornito, A ; Van Rheenen, TE ; Zalesky, A (Oxford University Press (OUP), 2021-01)
    Processing speed (PS) impairment is one of the most severe and common cognitive deficits in schizophrenia. Previous studies have reported correlations between PS and white matter diffusion properties, including fractional anisotropy (FA), in several fiber bundles in schizophrenia, suggesting that white matter alterations could underpin decreased PS. In schizophrenia, white matter alterations are most prevalent within inter-hub connections of the rich club. However, the spatial and topological characteristics of this association between PS and FA have not been investigated in patients. In this context, we tested whether structural connections comprising the rich club network would underlie PS impairment in 298 patients with schizophrenia or schizoaffective disorder and 190 healthy controls from the Australian Schizophrenia Research Bank. PS, measured using the digit symbol coding task, was largely (Cohen's d = 1.33) and significantly (P < .001) reduced in the patient group when compared with healthy controls. Significant associations between PS and FA were widespread in the patient group, involving all cerebral lobes. FA was not associated with other cognitive measures of phonological fluency and verbal working memory in patients, suggesting specificity to PS. A topological analysis revealed that despite being spatially widespread, associations between PS and FA were over-represented among connections forming the rich club network. These findings highlight the need to consider brain network topology when investigating high-order cognitive functions that may be spatially distributed among several brain regions. They also reinforce the evidence that brain hubs and their interconnections may be particularly vulnerable parts of the brain in schizophrenia.
  • Item
    Thumbnail Image
    O2.3. ABNORMAL BRAIN AGING IN YOUTH WITH SUBCLINICAL PSYCHOSIS AND OBSESSIVE-COMPULSIVE SYMPTOMS
    Cropley, V ; Tian, Y ; Fernando, K ; Mansour, S ; Pantelis, C ; Cocchi, L ; Zalesky, A (Oxford University Press (OUP), 2020-05-18)
    Abstract Background Psychiatric symptoms in childhood and adolescence have been associated with both delayed and accelerated patterns of grey matter development. This suggests that deviation in brain structure from a normative range of variation for a given age might be important in the emergence of psychopathology. Distinct from chronological age, brain age refers to the age of an individual that is inferred from a normative model of brain structure for individuals of the same age and sex. We predicted brain age from a common set of grey matter features and examined whether the difference between an individual’s chronological and brain age was associated with the severity of psychopathology in children and adolescents. Methods Participants included 1313 youths (49.8% male) aged 8–21 who underwent structural imaging as part of the Philadelphia Neurodevelopmental Cohort. Independent Component Analysis was used to obtain 7 psychopathology dimensions representing Conduct, Anxiety, Obsessive-Compulsive, Attention, Depression, Bipolar, and Psychosis symptoms and an overall measure of severity (General Psychopathology). Using 10-fold cross-validation, support vector machine regression was trained in 402 typically developing youth to predict individual age based on a feature space comprising 111 grey matter regions. This yielded a brain age prediction for each individual. Brain age gap was calculated for each individual by subtracting chronological age from predicted brain age. The general linear model was used to test for an association between brain age gap and each of the 8 dimensions of psychopathology in a test sample of 911 youth. The regional specificity and spatial pattern of brain age gap was also investigated. Error control across the 8 models was achieved with a false discovery rate of 5%. Results Brain age gap was significantly associated with dimensions characterizing obsessive-compulsive (t=2.5, p=0.01), psychosis (t=3.16, p=0.0016) and general psychopathology (t=4.08, p&lt;0.0001). For all three dimensions, brain age gap was positively associated with symptom severity, indicating that individuals with a brain that was predicted to be ‘older’ than expectations set by youth of the same chronological age and sex tended to have higher symptom scores. Findings were confirmed with a categorical approach, whereby higher brain age gap was observed in youth with a lifetime endorsement of psychosis (t=2.35, p=0.02) and obsessive-compulsive (t=2.35, p=0.021) symptoms, in comparison to typically developing individuals. Supplementary analyses revealed that frontal grey matter was the most important feature mediating the association between brain age gap and psychosis symptoms, whereas subcortical volumes were most important for the association between brain age gap and obsessive-compulsive and general symptoms. Discussion We found that the brain was ‘older’ in youth experiencing higher subclinical symptoms of psychosis, obsession-compulsion, and general psychopathology, compared to normally developing youth of the same chronological age. Our results suggest that deviations in normative brain age patterns in youth may contribute to the manifestation of specific psychiatric symptoms of subclinical severity that cut across psychopathology dimensions.
  • Item
    Thumbnail Image
    S187. EXPLORING NEURODEVELOPMENTAL AND FAMILIAL ORIGINS OF NEUROLOGICAL SOFT SIGNS IN SCHIZOPHRENIA
    Cooper, R ; Van Rheenen, T ; Zalesky, A ; Wannan, C ; Wang, Y ; Bousman, C ; Everall, I ; Pantelis, C ; Cropley, V (Oxford University Press (OUP), 2020-05-18)
    Abstract Background The neurodevelopmental hypothesis is the most widely regarded framework for understanding the development of schizophrenia. One of the most commonly cited pieces of evidence for this theory is the presence of neurological soft signs (NSS) in individuals prior to the onset of psychosis. Increased NSS is also reported in unaffected individuals with a family history of schizophrenia, suggesting that NSS may also have a familial component. Although much research has implicated reduced grey matter volume (GMV) in association with these signs, a subcomponent of volume, known as gyrification, has been poorly researched. Given that gyrification develops predominantly in prenatal life it may be particularly susceptible to a neurodevelopmental abnormality. The aims of this study were to investigate the neurodevelopmental and familial underpinnings of NSS in schizophrenia. Specifically, we examined the brain structural correlates, at both the level of GMV and gyrification, of NSS in individuals with schizophrenia, their unaffected relatives and healthy controls. We aimed to determine whether gyrification better predicted NSS severity than GMV, and whether the relationship between brain structure and NSS were present in a step-wise manner across the diagnostic groups. Methods The sample consisted of individuals with schizophrenia (N=66), their unaffected relatives (N=27) and healthy controls (N=53). NSS was assessed with the Neurological Evaluation Scale (NES), and GMV and gyrification were extracted from MRI using the FreeSurfer imaging suite. A series of analysis of covariance were used to compare NES scores and brain measures between the groups. Separate linear regression analyses were used to assess whether whole-brain GMV and gyrification predicted NES above a covariate-only model. Moderation analyses were used to assess whether the relationship between NES and brain structure were different between the diagnostic groups. Error control was achieved with a false discovery rate of 5%. Results NES was significantly higher in schizophrenia patients than relatives (p&lt;.0001), who were in turn significantly higher than controls (p=.034). With the groups combined, lower GMV (p&lt;.0001), as well as lower gyrification (p=.004), predicted higher NES above a covariate-only model. GMV predicted greater variance in NSS in comparison to gyrification, explaining an additional 20.3% of the variance in NES, in comparison to the additional 5.5% of variance in NES explained by gyrification. Diagnostic group moderated the association between GMV and NES (p=.019), but not between gyrification and NES (p=.245). Follow-up tests revealed that lower GMV was associated with higher NES in schizophrenia (t=-4.5, p&lt;.0001) and relatives (t=-2.5, p=.015) but not controls (t=-1.9, p=.055). Discussion Our findings indicate that NSS is heritable, being present in patients with established schizophrenia, and to a lesser extent, in unaffected relatives. Consistent with previous research, we revealed that GMV predicted NSS severity, suggesting that abnormalities in volume may underlie these signs. We additionally found that gyrification predicted, although to a lesser extent than volume, NSS severity, providing some support for schizophrenia being of possible neurodevelopmental origin. Evidence for an association between volume and NSS in relatives, whom are not confounded by illness-related factors such as medication and symptom severity, indicates a familial contribution to the neural underpinnings of NSS. Together, our study suggests that there may be various aetiological pathways underlying soft signs across the schizophrenia diathesis, some that may be of familial or neurodevelopmental origin.
  • Item
    No Preview Available
    Brain morphology is differentially impacted by peripheral cytokines in schizophrenia-spectrum disorder
    Laskaris, L ; Mancuso, S ; Shannon Weickert, C ; Zalesky, A ; Chana, G ; Wannan, C ; Bousman, C ; Baune, BT ; McGorry, P ; Pantelis, C ; Cropley, VL (Elsevier, 2021)
    Deficits in brain morphology are one of the most widely replicated neuropathological features in schizophrenia-spectrum disorder (SSD), although their biological underpinnings remain unclear. Despite the existence of hypotheses by which peripheral inflammation may impact brain structure, few studies have examined this relationship in SSD. This study aimed to establish the relationship between peripheral markers of inflammation and brain morphology and determine whether such relationships differed across healthy controls and individuals with first episode psychosis (FEP) and chronic schizophrenia. A panel of 13 pro- and anti-inflammatory cytokines were quantified from serum in 175 participants [n = 84 Healthy Controls (HC), n = 40 FEP, n = 51 Chronic SCZ]. We first performed a series of permutation tests to identify the cytokines most consistently associated with brain structural regions. Using moderation analysis, we then determined the extent to which individual variation in select cytokines, and their interaction with diagnostic status, predicted variation in brain structure. We found significant interactions between cytokine level and diagnosis on brain structure. Diagnostic status significantly moderated the relationship of IFNγ, IL4, IL5 and IL13 with frontal thickness, and of IFNγ and IL5 and total cortical volume. Specifically, frontal thickness was positively associated with IFNγ, IL4, IL5 and IL13 cytokine levels in the healthy control group, whereas pro-inflammatory cytokines IFNγ and IL5 were associated with lower total cortical volume in the FEP group. Our findings suggest that while there were no relationships detected in chronic schizophrenia, the relationship between peripheral inflammatory markers and select brain regions are differentially impacted in FEP and healthy controls. Longitudinal investigations are required to determine whether the relationship between brain structure and peripheral inflammation changes over time.
  • Item
    No Preview Available
    Large-Scale Evidence for an Association Between Peripheral Inflammation and White Matter Free Water in Schizophrenia and Healthy Individuals
    Di Biase, MA ; Zalesky, A ; Cetin-Karayumak, S ; Rathi, Y ; Lv, J ; Boerrigter, D ; North, H ; Tooney, P ; Pantelis, C ; Pasternak, O ; Shannon Weickert, C ; Cropley, VL (Oxford University Press (OUP), 2021-03-01)
    INTRODUCTION: Clarifying the role of neuroinflammation in schizophrenia is subject to its detection in the living brain. Free-water (FW) imaging is an in vivo diffusion-weighted magnetic resonance imaging (dMRI) technique that measures water molecules freely diffusing in the brain and is hypothesized to detect inflammatory processes. Here, we aimed to establish a link between peripheral markers of inflammation and FW in brain white matter. METHODS: All data were obtained from the Australian Schizophrenia Research Bank (ASRB) across 5 Australian states and territories. We first tested for the presence of peripheral cytokine deregulation in schizophrenia, using a large sample (N = 1143) comprising the ASRB. We next determined the extent to which individual variation in 8 circulating pro-/anti-inflammatory cytokines related to FW in brain white matter, imaged in a subset (n = 308) of patients and controls. RESULTS: Patients with schizophrenia showed reduced interleukin-2 (IL-2) (t = -3.56, P = .0004) and IL-12(p70) (t = -2.84, P = .005) and increased IL-6 (t = 3.56, P = .0004), IL-8 (t = 3.8, P = .0002), and TNFα (t = 4.30, P < .0001). Higher proinflammatory signaling of IL-6 (t = 3.4, P = .0007) and TNFα (t = 2.7, P = .0007) was associated with higher FW levels in white matter. The reciprocal increases in serum cytokines and FW were spatially widespread in patients encompassing most major fibers; conversely, in controls, the relationship was confined to the anterior corpus callosum and thalamic radiations. No relationships were observed with alternative dMRI measures, including the fractional anisotropy and tissue-related FA. CONCLUSIONS: We report widespread deregulation of cytokines in schizophrenia and identify inflammation as a putative mechanism underlying increases in brain FW levels.
  • Item
    No Preview Available
    Network Analysis of Symptom Comorbidity in Schizophrenia: Relationship to Illness Course and Brain White Matter Microstructure
    Ye, H ; Zalesky, A ; Lv, J ; Loi, SM ; Cetin-Karayumak, S ; Rathi, Y ; Tian, Y ; Pantelis, C ; Di Biase, MA (Oxford University Press (OUP), 2021-03-08)
    INTRODUCTION: Recent network-based analyses suggest that schizophrenia symptoms are intricately connected and interdependent, such that central symptoms can activate adjacent symptoms and increase global symptom burden. Here, we sought to identify key clinical and neurobiological factors that relate to symptom organization in established schizophrenia. METHODS: A symptom comorbidity network was mapped for a broad constellation of symptoms measured in 642 individuals with a schizophrenia-spectrum disorder. Centrality analyses were used to identify hub symptoms. The extent to which each patient's symptoms formed clusters in the comorbidity network was quantified with cluster analysis and used to predict (1) clinical features, including illness duration and psychosis (positive symptom) severity and (2) brain white matter microstructure, indexed by the fractional anisotropy (FA), in a subset (n = 296) of individuals with diffusion-weighted imaging (DWI) data. RESULTS: Global functioning, substance use, and blunted affect were the most central symptoms within the symptom comorbidity network. Symptom profiles for some patients formed highly interconnected clusters, whereas other patients displayed unrelated and disconnected symptoms. Stronger clustering among an individual's symptoms was significantly associated with shorter illness duration (t = 2.7; P = .0074), greater psychosis severity (ie, positive symptoms expression) (t = -5.5; P < 0.0001) and lower fractional anisotropy in fibers traversing the cortico-cerebellar-thalamic-cortical circuit (r = .59, P < 0.05). CONCLUSION: Symptom network structure varies over the course of schizophrenia: symptom interactions weaken with increasing illness duration and strengthen during periods of high positive symptom expression. Reduced white matter coherence relates to stronger symptom clustering, and thus, may underlie symptom cascades and global symptomatic burden in individuals with schizophrenia.
  • Item
    No Preview Available
    White matter pathology in schizophrenia
    Di Biase, MA ; Pantelis, C ; Zalesky, A ; Kubicki, M ; Shenton, ME (Springer Nature, 2020-01-01)
    Significant effort has been devoted to characterizing white matter pathology in patients with schizophrenia and its impact on brain connectivity (Samartzis et al., J Neuroimaging 24(2):101-10, 2014; Fusar-Poli et al., Neurosci Biobehav Rev 37(8):1680-91, 2013; Bora et al., Schizophr Res 127(1):46-57, 2011). This is particularly important in light of the disconnection hypothesis-a key etiological theory of schizophrenia suggesting that symptoms arise from a failure of integration between distinct brain regions (Friston, Schizophr Res 30(2):115-25, 1998). In this chapter, we focus on neuroimaging evidence demonstrating structural white matter alterations in schizophrenia. Key questions addressed include: what methods are sensitive to the pathophysiology of schizophrenia? What is the evidence that white matter pathology emerges prior to or near to the onset of psychosis? Is the trajectory of white matter pathology stable or, alternatively, a dynamic process, with progressive changes evident over the course of illness? What are the limitations of these studies? How does neuroimaging evidence relate to micro- and meso-structural white matter findings?.
  • Item
    Thumbnail Image
    Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort
    Lv, J ; Di Biase, M ; Cash, RFH ; Cocchi, L ; Cropley, VL ; Klauser, P ; Tian, Y ; Bayer, J ; Schmaal, L ; Cetin-Karayumak, S ; Rathi, Y ; Pasternak, O ; Bousman, C ; Pantelis, C ; Calamante, F ; Zalesky, A (SPRINGERNATURE, 2021-07)
    The heterogeneity of schizophrenia has defied efforts to derive reproducible and definitive anatomical maps of structural brain changes associated with the disorder. We aimed to map deviations from normative ranges of brain structure for individual patients and evaluate whether the loci of individual deviations recapitulated group-average brain maps of schizophrenia pathology. For each of 48 white matter tracts and 68 cortical regions, normative percentiles of variation in fractional anisotropy (FA) and cortical thickness (CT) were established using diffusion-weighted and structural MRI from healthy adults (n = 195). Individuals with schizophrenia (n = 322) were classified as either within the normative range for healthy individuals of the same age and sex (5-95% percentiles), infra-normal (<5% percentile) or supra-normal (>95% percentile). Repeating this classification for each tract and region yielded a deviation map for each individual. Compared to the healthy comparison group, the schizophrenia group showed widespread reductions in FA and CT, involving virtually all white matter tracts and cortical regions. Paradoxically, however, no more than 15-20% of patients deviated from the normative range for any single tract or region. Furthermore, 79% of patients showed infra-normal deviations for at least one locus (healthy individuals: 59 ± 2%, p < 0.001). Thus, while infra-normal deviations were common among patients, their anatomical loci were highly inconsistent between individuals. Higher polygenic risk for schizophrenia associated with a greater number of regions with infra-normal deviations in CT (r = -0.17, p = 0.006). We conclude that anatomical loci of schizophrenia-related changes are highly heterogeneous across individuals to the extent that group-consensus pathological maps are not representative of most individual patients. Normative modeling can aid in parsing schizophrenia heterogeneity and guiding personalized interventions.