Psychiatry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    The impact of premorbid and current intellect in schizophrenia: cognitive, symptom, and functional outcomes
    Wells, R ; Swaminathan, V ; Sundram, S ; Weinberg, D ; Bruggemann, J ; Jacomb, I ; Cropley, V ; Lenroot, R ; Pereira, AM ; Zalesky, A ; Bousman, C ; Pantelis, C ; Weickert, CS ; Weickert, TW (SPRINGERNATURE, 2015)
    BACKGROUND: Cognitive heterogeneity among people with schizophrenia has been defined on the basis of premorbid and current intelligence quotient (IQ) estimates. In a relatively large, community cohort, we aimed to independently replicate and extend cognitive subtyping work by determining the extent of symptom severity and functional deficits in each group. METHODS: A total of 635 healthy controls and 534 patients with a diagnosis of schizophrenia or schizoaffective disorder were recruited through the Australian Schizophrenia Research Bank. Patients were classified into cognitive subgroups on the basis of the Wechsler Test of Adult Reading (a premorbid IQ estimate) and current overall cognitive abilities into preserved, deteriorated, and compromised groups using both clinical and empirical (k-means clustering) methods. Additional cognitive, functional, and symptom outcomes were compared among the resulting groups. RESULTS: A total of 157 patients (29%) classified as 'preserved' performed within one s.d. of control means in all cognitive domains. Patients classified as 'deteriorated' (n=239, 44%) performed more than one s.d. below control means in all cognitive domains except estimated premorbid IQ and current visuospatial abilities. A separate 138 patients (26%), classified as 'compromised,' performed more than one s.d. below control means in all cognitive domains and displayed greater impairment than other groups on symptom and functional measures. CONCLUSIONS: In the present study, we independently replicated our previous cognitive classifications of people with schizophrenia. In addition, we extended previous work by demonstrating worse functional outcomes and symptom severity in the compromised group.
  • Item
    Thumbnail Image
    Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group
    Kelly, S ; Jahanshad, N ; Zalesky, A ; Kochunov, P ; Agartz, I ; Alloza, C ; Andreassen, OA ; Arango, C ; Banaj, N ; Bouix, S ; Bousman, CA ; Brouwer, RM ; Bruggemann, J ; Bustillo, J ; Cahn, W ; Calhoun, V ; Cannon, D ; Carr, V ; Catts, S ; Chen, J ; Chen, J-X ; Chen, X ; Chiapponi, C ; Cho, KK ; Ciullo, V ; Corvin, AS ; Crespo-Facorro, B ; Cropley, V ; De Rossi, P ; Diaz-Caneja, CM ; Dickie, EW ; Ehrlich, S ; Fan, F-M ; Faskowitz, J ; Fatouros-Bergman, H ; Flyckt, L ; Ford, JM ; Fouche, J-P ; Fukunaga, M ; Gill, M ; Glahn, DC ; Gollub, R ; Goudzwaard, ED ; Guo, H ; Gur, RE ; Gur, RC ; Gurholt, TP ; Hashimoto, R ; Hatton, SN ; Henskens, FA ; Hibar, DP ; Hickie, IB ; Hong, LE ; Horacek, J ; Howells, FM ; Pol, HEH ; Hyde, CL ; Isaev, D ; Jablensky, A ; Jansen, PR ; Janssen, J ; Jonsson, EG ; Jung, LA ; Kahn, RS ; Kikinis, Z ; Liu, K ; Klauser, P ; Knoechel, C ; Kubicki, M ; Lagopoulos, J ; Langen, C ; Lawrie, S ; Lenroot, RK ; Lim, KO ; Lopez-Jaramillo, C ; Lyall, A ; Magnotta, V ; Mandl, RCW ; Mathalon, DH ; McCarley, RW ; McCarthy-Jones, S ; McDonald, C ; McEwen, S ; McIntosh, A ; Melicher, T ; Mesholam-Gately, R ; Michie, PT ; Mowry, B ; Mueller, BA ; Newell, DT ; O'Donnell, P ; Oertel-Knoechel, V ; Oestreich, L ; Paciga, SA ; Pantelis, C ; Pasternak, O ; Pearlson, G ; Pellicano, GR ; Pereira, A ; Zapata, JP ; Piras, F ; Potkin, SG ; Preda, A ; Rasser, PE ; Roalf, DR ; Roiz, R ; Roos, A ; Rotenberg, D ; Satterthwaite, TD ; Savadjiev, P ; Schall, U ; Scott, RJ ; Seal, ML ; Seidman, LJ ; Weickert, CS ; Whelan, CD ; Shenton, ME ; Kwon, JS ; Spalletta, G ; Spaniel, F ; Sprooten, E ; Stablein, M ; Stein, DJ ; Sundram, S ; Tan, Y ; Tan, S ; Tang, S ; Temmingh, HS ; Westlye, LT ; Tonnesen, S ; Tordesillas-Gutierrez, D ; Doan, NT ; Vaidya, J ; van Haren, NEM ; Vargas, CD ; Vecchio, D ; Velakoulis, D ; Voineskos, A ; Voyvodic, JQ ; Wang, Z ; Wan, P ; Wei, D ; Weickert, TW ; Whalley, H ; White, T ; Whitford, TJ ; Wojcik, JD ; Xiang, H ; Xie, Z ; Yamamori, H ; Yang, F ; Yao, N ; Zhang, G ; Zhao, J ; van Erp, TGM ; Turner, J ; Thompson, PM ; Donohoe, G (SPRINGERNATURE, 2018-05)
    The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.
  • Item
    Thumbnail Image
    Elevated ubiquitinated proteins in brain and blood of individuals with schizophrenia
    Bousman, CA ; Luza, S ; Mancuso, SG ; Kang, D ; Opazo, CM ; Mostaid, MS ; Cropley, V ; McGorry, P ; Weickert, CS ; Pantelis, C ; Bush, AI ; Everall, IP (NATURE PORTFOLIO, 2019-02-19)
    Dysregulation of the ubiquitin proteasome system (UPS) has been linked to schizophrenia but it is not clear if this dysregulation is detectable in both brain and blood. We examined free mono-ubiquitin, ubiquitinated proteins, catalytic ubiquitination, and proteasome activities in frozen postmortem OFC tissue from 76 (38 schizophrenia, 38 control) matched individuals, as well as erythrocytes from 181 living participants, who comprised 30 individuals with recent onset schizophrenia (mean illness duration = 1 year), 63 individuals with 'treatment-resistant' schizophrenia (mean illness duration = 17 years), and 88 age-matched participants without major psychiatric illness. Ubiquitinated protein levels were elevated in postmortem OFC in schizophrenia compared to controls (p = <0.001, AUC = 74.2%). Similarly, individuals with 'treatment-resistant' schizophrenia had higher levels of ubiquitinated proteins in erythrocytes compared to those with recent onset schizophrenia (p < 0.001, AUC = 65.5%) and controls (p < 0.001, AUC = 69.4%). The results could not be better explained by changes in proteasome activity, demographic, medication, or tissue factors. Our results suggest that ubiquitinated protein formation may be abnormal in both the brain and erythrocytes of those with schizophrenia, particularly in the later stages or specific sub-groups of the illness. A derangement in protein ubiquitination may be linked to pathogenesis or neurotoxicity in schizophrenia, and its manifestation in the blood may have prognostic utility.
  • Item
    Thumbnail Image
    Hippocampal subfields and visuospatial associative memory across stages of schizophrenia-spectrum disorder
    Wannan, CMJ ; Cropley, VL ; Chakravarty, MM ; Van Rheenen, TE ; Mancuso, S ; Bousman, C ; Everall, I ; McGorry, PD ; Pantelis, C ; Bartholomeusz, CF (CAMBRIDGE UNIV PRESS, 2019-10)
    BACKGROUND: While previous studies have identified relationships between hippocampal volumes and memory performance in schizophrenia, these relationships are not apparent in healthy individuals. Further, few studies have examined the role of hippocampal subfields in illness-related memory deficits, and no study has examined potential differences across varying illness stages. The current study aimed to investigate whether individuals with early and established psychosis exhibited differential relationships between visuospatial associative memory and hippocampal subfield volumes. METHODS: Measurements of visuospatial associative memory performance and grey matter volume were obtained from 52 individuals with a chronic schizophrenia-spectrum disorder, 28 youth with recent-onset psychosis, 52 older healthy controls, and 28 younger healthy controls. RESULTS: Both chronic and recent-onset patients had impaired visuospatial associative memory performance, however, only chronic patients showed hippocampal subfield volume loss. Both chronic and recent-onset patients demonstrated relationships between visuospatial associative memory performance and hippocampal subfield volumes in the CA4/dentate gyrus and the stratum that were not observed in older healthy controls. There were no group by volume interactions when chronic and recent-onset patients were compared. CONCLUSIONS: The current study extends the findings of previous studies by identifying particular hippocampal subfields, including the hippocampal stratum layers and the dentate gyrus, that appear to be related to visuospatial associative memory ability in individuals with both chronic and first-episode psychosis.
  • Item
    Thumbnail Image
    Exploring the moderating effects of dopaminergic polymorphisms and childhood adversity on brain morphology in schizophrenia-spectrum disorders
    Hoffmann, C ; Van Rheenen, TE ; Mancuso, SG ; Zalesky, A ; Bruggemann, J ; Lenroot, RK ; Sundram, S ; Weickert, CS ; Weickert, TW ; Pantelis, C ; Cropley, V ; Bousman, CA (ELSEVIER IRELAND LTD, 2018-11-30)
    Genetic and environmental etiologies may contribute to schizophrenia and its associated neurobiological profile. We examined the interaction between dopaminergic polymorphisms, childhood adversity and diagnosis (schizophrenia/schizoaffective disorder) on dopamine-related brain structures. Childhood adversity histories and structural MRI data were obtained from 249 (153 schizophrenia/schizoaffective, 96 controls) participants registered in the Australian Schizophrenia Research Bank. Polymorphisms in DRD2 and COMT were genotyped and a dopaminergic risk allelic load (RAL) was calculated. Regression analysis was used to test the main and interaction effects of RAL, childhood adversity and diagnosis on volumes of dopamine-related brain structures (caudate, putamen, nucleus accumbens, dorsolateral prefrontal cortex and hippocampus). A schizophrenia/schizoaffective diagnosis showed significant main effects on bilateral hippocampus, left dorsolateral prefrontal cortex and bilateral putamen volumes. RAL showed a significant main effect on left putamen volumes. Furthermore, across the whole sample, a significant two-way interaction between dopaminergic RAL and childhood adversity was found for left putamen volumes. No brain structure volumes were predicted by a three-way interaction that included diagnosis. Our finding suggests the left putamen may be particularly sensitive to dopaminergic gene-environment interactions regardless of diagnosis. However, larger studies are needed to assess whether these interactions are more or less pronounced in those with schizophrenia/schizoaffective disorders.
  • Item
    Thumbnail Image
    Widespread Volumetric Reductions in Schizophrenia and Schizoaffective Patients Displaying Compromised Cognitive Abilities
    Van Rheenen, TE ; Cropley, V ; Zalesky, A ; Bousman, C ; Wells, R ; Bruggemann, J ; Sundram, S ; Weinberg, D ; Lenroot, RK ; Pereira, A ; Weickert, CS ; Weickert, TW ; Pantelis, C (OXFORD UNIV PRESS, 2018-05)
    OBJECTIVE: Progress toward understanding brain mechanisms in psychosis is hampered by failures to account for within-group heterogeneity that exists across neuropsychological domains. We recently identified distinct cognitive subgroups that might assist in identifying more biologically meaningful subtypes of psychosis. In the present study, we examined whether underlying structural brain abnormalities differentiate these cognitively derived subgroups. METHOD: 1.5T T1 weighted structural scans were acquired for 168 healthy controls and 220 patients with schizophrenia/schizoaffective disorder. Based on previous work, 47 patients were categorized as being cognitively compromised (impaired premorbid and current IQ), 100 as cognitively deteriorated (normal premorbid IQ, impaired current IQ), and 73 as putatively cognitively preserved (premorbid and current IQ within 1 SD of controls). Global, subcortical and cortical volume, thickness, and surface area measures were compared among groups. RESULTS: Whole cortex, subcortical, and regional volume and thickness reductions were evident in all subgroups compared to controls, with the largest effect sizes in the compromised group. This subgroup also showed abnormalities in regions not seen in the other patient groups, including smaller left superior and middle frontal areas, left anterior and inferior temporal areas and right lateral medial and inferior frontal, occipital lobe and superior temporal areas. CONCLUSIONS: This pattern of more prominent brain structural abnormalities in the group with the most marked cognitive impairments-both currently and putatively prior to illness onset, is consistent with the concept of schizophrenia as a progressive neurodevelopmental disorder. In this group, neurodevelopmental and neurodegenerative factors may be important for cognitive function.