Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Effectiveness of portable air filtration on reducing indoor aerosol transmission: preclinical observational trials
    Lee, JH ; Rounds, M ; McGain, F ; Schofield, R ; Skidmore, G ; Wadlow, I ; Kevin, K ; Stevens, A ; Marshall, C ; Irving, L ; Kainer, M ; Buising, K ; Monty, J (W B SAUNDERS CO LTD, 2022-01)
    BACKGROUND: While the range of possible transmission pathways of severe acute respiratory syndrome coronavirus-2 in various settings has been investigated thoroughly, most authorities have recently acknowledged the role of aerosol spread in its transmission, especially in indoor environments where ventilation is poor. Engineering controls are needed to mitigate aerosol transmission in high-risk settings including hospital wards, classrooms and offices. AIM: To assess the effectiveness of aerosol filtration by portable air cleaning devices with high-efficiency particulate air filters used in addition to a standard building heating ventilation and air conditioning (HVAC) system. METHODS: Test rooms, including a single-bed hospital room, were filled with test aerosol to simulate aerosol movement. Aerosol counts were measured over time with various portable air cleaning devices and room ventilation systems to quantify the overall aerosol clearance rate. FINDINGS: Portable air cleaning devices were very effective for removal of aerosols. The aerosols were cleared five times faster in a small control room with portable air cleaning devices than in the room with HVAC alone. The single-bed hospital room had an excellent ventilation rate (∼14 air changes per hour) and cleared the aerosols in 20 min. However, with the addition of two air cleaning devices, the clearance time was three times faster. CONCLUSIONS: Inexpensive portable air cleaning devices should be considered for small and enclosed spaces in healthcare settings, such as inpatient rooms and personal protective equipment donning/doffing stations. Portable air cleaning devices are particularly important where there is limited ability to reduce aerosol transmission with building HVAC ventilation.
  • Item
    No Preview Available
    A hospital-wide response to multiple outbreaks of COVID-19 in health care workers: lessons learned from the field
    Buising, KL ; Williamson, D ; Cowie, BC ; MacLachlan, J ; Orr, E ; MacIsaac, C ; Williams, E ; Bond, K ; Muhi, S ; McCarthy, J ; Maier, AB ; Irving, L ; Heinjus, D ; Kelly, C ; Marshall, C (WILEY, 2021-02)
  • Item
    No Preview Available
    Pandemic printing: a novel 3D-printed swab for detecting SARS-CoV-2
    Williams, E ; Bond, K ; Isles, N ; Chong, B ; Johnson, D ; Druce, J ; Hoang, T ; Ballard, SA ; Hall, V ; Muhi, S ; Buising, KL ; Lim, S ; Strugnell, D ; Catton, M ; Irving, LB ; Howden, BP ; Bert, E ; Williamson, DA (WILEY, 2020-09)
    OBJECTIVES: To design and evaluate 3D-printed nasal swabs for collection of samples for SARS-CoV-2 testing. DESIGN: An iterative design process was employed. Laboratory evaluation included in vitro assessment of mock nasopharyngeal samples spiked with two different concentrations of gamma-irradiated SARS-CoV-2. A prospective clinical study compared SARS-CoV-2 and human cellular material recovery by 3D-printed swabs and standard nasopharyngeal swabs. SETTING, PARTICIPANTS: Royal Melbourne Hospital, May 2020. Participants in the clinical evaluation were 50 hospital staff members attending a COVID-19 screening clinic and two inpatients with laboratory-confirmed COVID-19. INTERVENTION: In the clinical evaluation, a flocked nasopharyngeal swab sample was collected with the Copan ESwab and a mid-nasal sample from the other nostril was collected with the 3D-printed swab. RESULTS: In the laboratory evaluation, qualitative agreement with regard to SARS-CoV-2 detection in mock samples collected with 3D-printed swabs and two standard swabs was complete. In the clinical evaluation, qualitative agreement with regard to RNase P detection (a surrogate measure of adequate collection of human cellular material) in samples collected from 50 hospital staff members with standard and 3D-printed swabs was complete. Qualitative agreement with regard to SARS-CoV-2 detection in three pairs of 3D-printed mid-nasal and standard swab samples from two inpatients with laboratory-confirmed SARS-CoV-2 was also complete. CONCLUSIONS: Using 3D-printed swabs to collect nasal samples for SARS-CoV-2 testing is feasible, acceptable to patients and health carers, and convenient.
  • Item