Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    No Preview Available
    Quantitative Spatial Analysis of Neuroligin-3 mRNA Expression in the Enteric Nervous System Reveals a Potential Role in Neuronal-Glial Synapses and Reduced Expression in Nlgn3R451C Mice
    Herath, M ; Cho, E ; Marklund, U ; Franks, AE ; Bornstein, JC ; Hill-Yardin, EL (MDPI, 2023-07)
    Mutations in the Neuroligin-3 (Nlgn3) gene are implicated in autism spectrum disorder (ASD) and gastrointestinal (GI) dysfunction, but cellular Nlgn3 expression in the enteric nervous system remains to be characterised. We combined RNAScope in situ hybridization and immunofluorescence to measure Nlgn3 mRNA expression in cholinergic and VIP-expressing submucosal neurons, nitrergic and calretinin-containing myenteric neurons and glial cells in both WT and Nlgn3R451C mutant mice. We measured Nlgn3 mRNA neuronal and glial expression via quantitative three-dimensional image analysis. To validate dual RNAScope/immunofluorescence data, we interrogated available single-cell RNA sequencing (scRNASeq) data to assess for Nlgn3, Nlgn1, Nlgn2 and their binding partners, Nrxn1-3, MGDA1 and MGDA2, in enteric neural subsets. Most submucosal and myenteric neurons expressed Nlgn3 mRNA. In contrast to other Nlgns and binding partners, Nlgn3 was strongly expressed in enteric glia, suggesting a role for neuroligin-3 in mediating enteric neuron-glia interactions. The autism-associated R451C mutation reduces Nlgn3 mRNA expression in cholinergic but not in VIPergic submucosal neurons. In the myenteric plexus, Nlgn3 mRNA levels are reduced in calretinin, nNOS-labelled neurons and S100 β -labelled glia. We provide a comprehensive cellular profile for neuroligin-3 expression in ileal neuronal subpopulations of mice expressing the R451C autism-associated mutation in Nlgn3, which may contribute to the understanding of the pathophysiology of GI dysfunction in ASD.
  • Item
    No Preview Available
    Increasing muscle contractility through low-frequency stimulation alters tibial bone geometry and reduces bone strength in mdx and dko dystrophic mice
    Chan, AS ; Hardee, JP ; Blank, M ; Cho, EH-J ; McGregor, NE ; Sims, NA ; Lynch, GS (AMER PHYSIOLOGICAL SOC, 2023-07)
    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by mutations or deletions in the dystrophin gene, for which there remains no cure. As DMD patients also develop bone fragility because of muscle weakness and immobilization, better understanding of the pathophysiological mechanisms of dystrophin deficiency will help develop therapies to improve musculoskeletal health. Since alterations in muscle phenotype can influence bone structure, we investigated whether modifying muscle contractile activity through low-frequency stimulation (LFS) could alter bone architecture in mouse models of DMD. We tested the hypothesis that increasing muscle contractile activity could influence bone mass and structure in dystrophin-deficient (mdx) and dystrophin- and utrophin-deficient (dko) dystrophic mice. Tibial bone structure in dko mice was significantly different from that in mdx and wild-type (C57BL/10) control mice. Effects of LFS on bone architecture differed between dystrophic and healthy mice, with LFS thinning cortical bone in both dystrophic models. Bone mass was maintained in LFS-treated healthy mice, with a reduced proportion of high-density bone and concomitant increase in low-density bone. LFS-treated dko mice exhibited a net deficit in cortical thickness and reduced high-density bone but no equivalent increase in low-density bone. These alterations in bone structure and mineral density reduced mechanical strength in mdx and dko mice. The findings reveal that muscle activity can regulate bone mass, structure, mineral accrual, and strength, especially in the context of dystrophin and/or utrophin deficiency. The results provide unique insights into the development of bone fragility in DMD and for devising interventions to improve musculoskeletal health.NEW & NOTEWORTHY Patients with Duchenne muscular dystrophy (DMD) develop bone fragility because of muscle weakness and immobilization. We investigated whether increasing muscle contractile activity through low-frequency stimulation (LFS) could alter bone architecture in dystrophin-deficient (mdx) or dystrophin- and utrophin-deficient (dko) mouse models of DMD. Chronic LFS reduced tibial diaphysis cross sections in mdx and dko mice, without affecting bone shape in healthy mice. LFS affected the distribution of bone mineral density across all phenotypes, with the magnitude of effect being dependent on disease severity.
  • Item
    No Preview Available
    A semi-automated pipeline for quantifying drusen-like deposits in human induced pluripotent stem cell-derived retinal pigment epithelium cells.
    Hall, J ; Daniszewski, M ; Cheung, S ; Shobhana, K ; Kumar, H ; Liang, HH ; Beetham, H ; Cho, E ; Abbott, C ; Hewitt, AW ; Simpson, KJ ; Guymer, RH ; Paull, D ; Pébay, A ; Lidgerwood, GE (Elsevier BV, 2023-08-30)
    Age-Related Macular Degeneration (AMD) is a highly prevalent form of retinal disease amongst Western communities over 50 years of age. A hallmark of AMD pathogenesis is the accumulation of drusen underneath the retinal pigment epithelium (RPE), a biological process also observable in vitro. The accumulation of drusen has been shown to predict the progression to advanced AMD, making accurate characterisation of drusen in vitro models valuable in disease modelling and drug development. More recently, deposits above the RPE in the subretinal space, called reticular pseudodrusen (RPD) have been recognized as a sub-phenotype of AMD. While in vitro imaging techniques allow for the immunostaining of drusen-like deposits, quantification of these deposits often requires slow, low throughput manual counting of images. This further lends itself to issues including sampling biases, while ignoring critical data parameters including volume and precise localization. To overcome these issues, we developed a semi-automated pipeline for quantifying the presence of drusen-like deposits in vitro, using RPE cultures derived from patient-specific induced pluripotent stem cells (iPSCs). Using high-throughput confocal microscopy, together with three-dimensional reconstruction, we developed an imaging and analysis pipeline that quantifies the number of drusen-like deposits, and accurately and reproducibly provides the location and composition of these deposits. Extending its utility, this pipeline can determine whether the drusen-like deposits locate to the apical or basal surface of RPE cells. Here, we validate the utility of this pipeline in the quantification of drusen-like deposits in six iPSCs lines derived from patients with AMD, following their differentiation into RPE cells. This pipeline provides a valuable tool for the in vitro modelling of AMD and other retinal disease, and is amenable to mid and high throughput screenings.
  • Item
    Thumbnail Image
    Extracellular Vesicles Secreted by Glioma Stem Cells Are Involved in Radiation Resistance and Glioma Progression
    Ma, C ; Nguyen, HPT ; Jones, JJ ; Stylli, SS ; Whitehead, CA ; Paradiso, L ; Luwor, RB ; Areeb, Z ; Hanssen, E ; Cho, E ; Putz, U ; Kaye, AH ; Morokoff, AP (MDPI, 2022-03)
    Glioblastoma is the most aggressive brain tumour with short survival, partly due to resistance to conventional therapy. Glioma stem cells (GSC) are likely to be involved in treatment resistance, by releasing extracellular vesicles (EVs) containing specific molecular cargoes. Here, we studied the EVs secreted by glioma stem cells (GSC-EVs) and their effects on radiation resistance and glioma progression. EVs were isolated from 3 GSCs by serial centrifugation. NanoSight measurement, cryo-electron microscopy and live imaging were used to study the EVs size, morphology and uptake, respectively. The non-GSC glioma cell lines LN229 and U118 were utilised as a recipient cell model. Wound healing assays were performed to detect cell migration. Colony formation, cell viability and invadopodium assays were conducted to detect cell survival of irradiated recipient cells and cell invasion post GSC-EV treatment. NanoString miRNA global profiling was used to select for the GSC-EVs' specific miRNAs. All three GSC cell lines secreted different amounts of EVs, and all expressed consistent levels of CD9 but different level of Alix, TSG101 and CD81. EVs were taken up by both LN229 and U118 recipient cells. In the presence of GSC-EVs, these recipient cells survived radiation exposure and initiated colony formation. After GSC-EVs exposure, LN229 and U118 cells exhibited an invasive phenotype, as indicated by an increase in cell migration. We also identified 25 highly expressed miRNAs in the GSC-EVs examined, and 8 of these miRNAs can target PTEN. It is likely that GSC-EVs and their specific miRNAs induced the phenotypic changes in the recipient cells due to the activation of the PTEN/Akt pathway. This study demonstrated that GSC-EVs have the potential to induce radiation resistance and modulate the tumour microenvironment to promote glioma progression. Future therapeutic studies should be designed to interfere with these GSC-EVs and their specific miRNAs.
  • Item
    Thumbnail Image
    Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine
    Cho, H-J ; Callaghan, B ; Bron, R ; Bravo, DM ; Furness, JB (SPRINGER, 2014-04)
    TRPA1 is an ion channel that detects specific chemicals in food and also transduces mechanical, cold and chemical stimulation. Its presence in sensory nerve endings is well known and recent evidence indicates that it is expressed by some gastrointestinal enteroendocrine cells (EEC). The purpose of the present work is to identify and quantify EEC that express TRPA1 in the mouse gastrointestinal tract. Combined in situ hybridisation histochemistry for TRPA1 and immunofluorescence for EEC hormones was used. TRPA1 expressing EEC were common in the duodenum and jejunum, were rare in the distal small intestine and were absent from the stomach and large intestine. In the duodenum and jejunum, TRPA1 occurred in EEC that contained both cholecystokinin (CCK) and 5-hydroxytryptamine (5HT) and in a small number of cells expressing 5HT but not CCK. TRPA1 was absent from CCK cells that did not express 5HT and from EEC containing glucagon-like insulinotropic peptide. Thus TRPA1 is contained in very specific EEC populations. It is suggested that foods such as garlic and cinnamon that contain TRPA1 stimulants may aid digestion by facilitating the release of CCK.
  • Item
    Thumbnail Image
    Bone Geometry Is Altered by Follistatin-Induced Muscle Growth in Young Adult Male Mice
    Chan, ASM ; McGregor, NE ; Poulton, IJ ; Hardee, JP ; Cho, EH-J ; Martin, TJ ; Gregorevic, P ; Sims, NA ; Lynch, GS (WILEY, 2021-04)
  • Item
    Thumbnail Image
    STAT3 Hyperactivation Due to SOCS3 Deletion in Murine Osteocytes Accentuates Responses to Exercise- and Load-Induced Bone Formation
    McGregor, NE ; Walker, EC ; Chan, ASM ; Poulton, IJ ; Cho, EH-J ; Windahl, SH ; Sims, NA (WILEY, 2022-03)
  • Item
    Thumbnail Image
    Glucagon-like peptide 1 and peptide YY are in separate storage organelles in enteroendocrine cells
    Cho, H-J ; Robinson, ES ; Rivera, LR ; McMillan, PJ ; Testro, A ; Nikfarjam, M ; Bravo, DM ; Furness, JB (SPRINGER, 2014-07)
    A sub-group of enteroendocrine cells (L cells) release gastrointestinal hormones, GLP-1 and PYY, which have different but overlapping physiological effects, in response to intraluminal nutrients. Whilst their release profiles are not identical, how the plasma levels of these two hormones are differentially regulated is not well understood. We investigate the possibility that GLP-1 and PYY are in separate storage vesicles. In this study, the subcellular location of GLP-1 and PYY storage organelles is investigated using double-labelling immunohistochemistry, super resolution microscopy and high-resolution confocal microscopy. In all species tested, human, pig, rat and mouse, most cytoplasmic stores that exhibited GLP-1 or PYY immunofluorescence were distinct from each other. The volume occupancy, determined by 3D analysis, overlapped by only about 10∼20 %. At the lower resolution achieved by conventional confocal microscopy, there was also evidence of GLP-1 and PYY being in separate storage compartments but, in subcellular regions where there were many storage vesicles, separate storage could not be resolved. The results indicate that different storage vesicles in L cells contain predominantly GLP-1 or predominantly PYY. Whether GLP-1 and PYY storage vesicles are selectively mobilised and their products are selectively released needs to be determined.
  • Item
    Thumbnail Image
    Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine
    Fothergill, LJ ; Callaghan, B ; Rivera, LR ; Lieu, T ; Poole, DP ; Cho, H-J ; Bravo, DM ; Furness, JB (MDPI AG, 2016-10)
    TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients) include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT) or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1, and in Trpa1-deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC) > cinnamaldehyde > linalool (0.1 to 300 μM). The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 μM), and were greatly diminished in Trpa1-/- duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption.
  • Item
    Thumbnail Image
    Selenium-Enriched Agaricus bisporus Mushroom Protects against Increase in Gut Permeability ex vivo and Up-Regulates Glutathione Peroxidase 1 and 2 in Hyperthermally-Induced Oxidative Stress in Rats
    Maseko, T ; Dunshea, FR ; Howell, K ; Cho, H-J ; Rivera, LR ; Furness, JB ; Ng, K (MDPI AG, 2014-06)
    Dietary effects of organic Se supplementation in the form of Se-enriched Agaricus bisporus mushroom on ileal mucosal permeability and antioxidant selenoenzymes status in heat induced oxidative stress in rats were evaluated. Acute heat stress (40 °C, 21% relative humidity, 90 min exposure) increased ileum baseline short circuit current (Isc; 2.40-fold) and epithelial conductance (Ge; 2.74-fold). Dietary supplementation with Se-enriched A. bisporus (1 µg Se/g feed) reduced (p < 0.05) ileum Isc and Ge during heat stress to 1.74 and 1.91 fold, respectively, indicating protection from heat stress-induced mucosal permeability increase. The expression of ileum glutathione peroxidase (GPx-) 1 and 2 mRNAs were up-regulated (p < 0.05) by 1.90 and 1.87-fold, respectively, for non-heat stress rats on the Se-enriched diet relative to the control. The interplay between heat stress and dietary Se is complex. For rats on the control diet, heat stress alone increased ileum expression of GPx-1 (2.33-fold) and GPx-2 (2.23-fold) relative to thermoneutral conditions. For rats on the Se-enriched diet, heat stress increased (p < 0.05) GPx-1 expression only. Rats on Se-enriched + α-tocopherol diet exhibited increased expression of both genes (p < 0.05). Thus, dietary Se-enriched A. bisporus protected against increase in ileum permeability and up-regulated GPx-1 and GPx-2 expression, selenoenzymes relevant to mitigating oxidative stress.