Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Investigation of nerve pathways mediating colorectal dysfunction in Parkinson's disease model produced by lesion of nigrostriatal dopaminergic neurons
    Chai, X-Y ; Diwakarla, S ; Pustovit, RV ; McQuade, RM ; Di Natale, M ; Ermine, CM ; Parish, CL ; Finkelstein, DI ; Furness, JB (WILEY, 2020-09)
    BACKGROUND: Gastrointestinal (GI) dysfunction, including constipation, is a common non-motor symptom of Parkinson's disease (PD). The toxin 6-hydroxydopamine (6OHDA) produces the symptoms of PD, surprisingly including constipation, after it is injected into the medial forebrain bundle (MFB). However, the mechanisms involved in PD-associated constipation caused by central application of 6OHDA remain unknown. We investigated effects of 6OHDA lesioning of the MFB on motor performance and GI function. METHODS: Male Sprague Dawley rats were unilaterally injected with 6OHDA in the MFB. Colorectal propulsion was assessed by bead expulsion after 4 weeks and by recording colorectal contractions and propulsion after 5 weeks. Enteric nervous system (ENS) neuropathy was examined by immunohistochemistry. KEY RESULTS: When compared to shams, 6OHDA-lesioned rats had significantly increased times of bead expulsion from the colorectum, indicative of colon dysmotility. Administration of the colokinetic, capromorelin, that stimulates defecation centers in the spinal cord, increased the number of contractions and colorectal propulsion in both groups compared to baseline; however, the effectiveness of capromorelin in 6OHDA-lesioned rats was significantly reduced in comparison with shams, indicating that 6OHDA animals have reduced responsiveness of the spinal defecation centers. Enteric neuropathy was observed in the distal colon, revealing that lesion of the MFB has downstream effects at the cellular level, remote from the site of 6OHDA administration. CONCLUSIONS & INFERENCES: We conclude that there are trans-synaptic effects of the proximal, forebrain, lesion of pathways from the brain that send signals down the spinal cord, at the levels of the defecation centers and the ENS.
  • Item
    Thumbnail Image
    Effects and sites of action of a M1 receptor positive allosteric modulator on colonic motility in rats and dogs compared with 5-HT4 agonism and cholinesterase inhibition
    Tsukimi, Y ; Pustovit, RV ; Harrington, AM ; Garcia-Caraballo, S ; Brierley, SM ; Di Natale, M ; Molero, JC ; Furness, JB (WILEY, 2020-08)
    BACKGROUND: Muscarinic receptor 1 positive allosteric modulators (M1PAMs) enhance colonic propulsive contractions and defecation through the facilitation of M1 receptor (M1R)-mediated signaling. We examined M1R expression in the colons of 5 species and compared colonic propulsion and defecation caused by the M1PAM, T440, the 5-HT4 agonist, prucalopride, and the cholinesterase inhibitor, neostigmine, in rats and dogs. METHODS: M1R expression was profiled by immunostaining and in situ hybridization. In vivo studies utilized male SD rats and beagle dogs. Colonic propulsive contractions were recorded by manometry in anesthetized rats. Gut contractions in dogs were assessed using implanted force transducers in the ileum, proximal, mid, and distal colons. KEY RESULTS: M1R was localized to neurons of myenteric and submucosal plexuses and the epithelium of the human colon. A similar receptor localization was observed in rat, dog, mouse, and pig. T440 enhanced normal defecation in rats in a dose-dependent manner. Prucalopride also enhanced defecation in rats, but the maximum effect was half that of T440. Neostigmine and T440 were similarly effective in enhancing defecation, but the effective dose of neostigmine was close to its lethal dose. In rats, all 3 compounds induced colonic contractions, but the associated propulsion was strongest with T440. In dogs, intestinal contractions elicited by T440 propagated from ileum to distal colon. Prucalopride and neostigmine also induced intestinal contractions, but these were less well coordinated. No loss of effectiveness of T440 on defecation occurred after 5 days of repeated dosing. CONCLUSION AND INFERENCES: These results suggest that M1PAMs produce highly coordinated propagating contraction by actions on the enteric nervous system of the colon. The localization of M1R to enteric neurons in both animals and humans suggests that the M1PAM effects would be translatable to human. M1PAMs provide a potential novel therapeutic option for constipation disorders.