Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    The Role of Histamine in the Retina: Studies on the Hdc Knockout Mouse
    Greferath, U ; Vessey, KA ; Jobling, AI ; Mills, SA ; Bui, BV ; He, Z ; Nag, N ; Ohtsu, H ; Fletcher, EL ; Kihara, AH (PUBLIC LIBRARY SCIENCE, 2014-12-29)
    The role of histamine in the retina is not well understood, despite it regulating a number of functions within the brain, including sleep, feeding, energy balance, and anxiety. In this study we characterized the structure and function of the retina in mice that lacked expression of the rate limiting enzyme in the formation of histamine, histidine decarboxylase (Hdc-/- mouse). Using laser capture microdissection, Hdc mRNA expression was assessed in the inner and outer nuclear layers of adult C57Bl6J wildtype (WT) and Hdc(-/-)-retinae. In adult WT and Hdc(-/-)-mice, retinal fundi were imaged, retinal structure was assessed using immunocytochemistry and function was probed by electroretinography. Blood flow velocity was assessed by quantifying temporal changes in the dynamic fluorescein angiography in arterioles and venules. In WT retinae, Hdc gene expression was detected in the outer nuclear layer, but not the inner nuclear layer, while the lack of Hdc expression was confirmed in the Hdc-/- retina. Preliminary examination of the fundus and retinal structure of the widely used Hdc-/- mouse strain revealed discrete lesions across the retina that corresponded to areas of photoreceptor abnormality reminiscent of the rd8 (Crb1) mutation. This was confirmed after genotyping and the strain designated Hdcrd8/rd8. In order to determine the effect of the lack of Hdc-alone on the retina, Hdc-/- mice free of the Crb1 mutation were bred. Retinal fundi appeared normal in these animals and there was no difference in retinal structure, macrogliosis, nor any change in microglial characteristics in Hdc-/- compared to wildtype retinae. In addition, retinal function and retinal blood flow dynamics showed no alterations in the Hdc-/- retina. Overall, these results suggest that histamine plays little role in modulating retinal structure and function.
  • Item
    Thumbnail Image
    Studying Age-Related Macular Degeneration Using Animal Models
    Fletcher, EL ; Jobling, AI ; Greferath, U ; Mills, SA ; Waugh, M ; Ho, T ; de Iongh, RU ; Phipps, JA ; Vessey, KA (LIPPINCOTT WILLIAMS & WILKINS, 2014-08)
    Over the recent years, there have been tremendous advances in our understanding of the genetic and environmental factors associated with the development of age-related macular degeneration (AMD). Examination of retinal changes in various animals has aided our understanding of the pathogenesis of the disease. Notably, mouse strains, carrying genetic anomalies similar to those affecting humans, have provided a foundation for understanding how various genetic risk factors affect retinal integrity. However, to date, no single mouse strain that develops all the features of AMD in a progressive age-related manner has been identified. In addition, a mutation present in some background strains has clouded the interpretation of retinal phenotypes in many mouse strains. The aim of this perspective was to describe how animals can be used to understand the significance of each sign of AMD, as well as key genetic risk factors.
  • Item
    Thumbnail Image
    Adenosine Triphosphate-Induced Photoreceptor Death and Retinal Remodeling In Rats
    Vessey, KA ; Greferath, U ; Aplin, FP ; Jobling, AI ; Phipps, JA ; Ho, T ; De Iongh, RU ; Fletcher, EL (WILEY, 2014-09-01)
    Many common causes of blindness involve the death of retinal photoreceptors, followed by progressive inner retinal cell remodeling. For an inducible model of retinal degeneration to be useful, it must recapitulate these changes. Intravitreal administration of adenosine triphosphate (ATP) has recently been found to induce acute photoreceptor death. The aim of this study was to characterize the chronic effects of ATP on retinal integrity. Five-week-old, dark agouti rats were administered 50 mM ATP into the vitreous of one eye and saline into the other. Vision was assessed using the electroretinogram and optokinetic response and retinal morphology investigated via histology. ATP caused significant loss of visual function within 1 day and loss of 50% of the photoreceptors within 1 week. At 3 months, 80% of photoreceptor nuclei were lost, and total photoreceptor loss occurred by 6 months. The degeneration and remodeling were similar to those found in heritable retinal dystrophies and age-related macular degeneration and included inner retinal neuronal loss, migration, and formation of new synapses; Müller cell gliosis, migration, and scarring; blood vessel loss; and retinal pigment epithelium migration. In addition, extreme degeneration and remodeling events, such as neuronal and glial migration outside the neural retina and proliferative changes in glial cells, were observed. These extreme changes were also observed in the 2-year-old P23H rhodopsin transgenic rat model of retinitis pigmentosa. This ATP-induced model of retinal degeneration may provide a valuable tool for developing pharmaceutical therapies or for testing electronic implants aimed at restoring vision.