Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    Correlation of Histologic Features with In Vivo Imaging of Reticular Pseudodrusen
    Greferath, U ; Guymer, RH ; Vessey, KA ; Brassington, K ; Fletcher, EL (ELSEVIER SCIENCE INC, 2016-06)
    PURPOSE: To determine the histologic and cellular correlates in the retina and retinal pigment epithelium (RPE) with the presence of optical coherence tomography-defined reticular pseudodrusen (RPD). DESIGN: Observation case using immunocytochemistry of an exenterated eye with immediate fixation after removal. PARTICIPANTS: Two patients, one with confirmed RPD and the other with mid-peripheral drusen, underwent multimethod imaging before exenteration and immediate fixation of the posterior eyecup for high-resolution immunocytochemical analysis. METHODS: Optical coherence tomography (OCT) was compared with high-resolution immunocytochemistry using a range of cellular markers to determine changes in the RPE, photoreceptors, and gliosis. MAIN OUTCOME MEASURES: Correlations of the appearance of reticular pseudodrusen on OCT and immunocytochemical analysis. RESULTS: Reticular pseudodrusen were deposits juxtaposed to photoreceptor outer segments extending through the outer nuclear layer and even beyond the outer limiting membrane. Deposits were rich in vitronectin, photoreceptor-associated proteins, and Iba1-immunoreactive immune cells. In contrast to conventional drusen the lipid stain Oil Red O failed to stain RPD. Cellular analysis revealed that RPD were associated with photoreceptor disruption and loss and localized gliosis. In addition, anomalies in the RPE were observed. CONCLUSIONS: Reticular pseudodrusen represent subretinal deposits that extend through the outer nuclear layer, affect photoreceptor integrity, and are associated with retinal gliosis and RPE damage.
  • Item
    Thumbnail Image
    Uteroplacental insufficiency leads to hypertension, but not glucose intolerance or impaired skeletal muscle mitochondrial biogenesis, in 12-month-old rats
    Tran, M ; Young, ME ; Jefferies, AJ ; Hryciw, DH ; Ward, MM ; Fletcher, EL ; Wlodek, ME ; Wadley, GD (WILEY, 2015-09)
    Growth restriction impacts on offspring development and increases their risk of disease in adulthood which is exacerbated with "second hits." The aim of this study was to investigate if blood pressure, glucose tolerance, and skeletal muscle mitochondrial biogenesis were altered in 12-month-old male and female offspring with prenatal or postnatal growth restriction. Bilateral uterine vessel ligation induced uteroplacental insufficiency and growth restriction in offspring (Restricted). A sham surgery was also performed during pregnancy (Control) and some litters from sham mothers had their litter size reduced (Reduced litter), which restricted postnatal growth. Growth-restricted females only developed hypertension at 12 months, which was not observed in males. In Restricted females only homeostasis model assessment for insulin resistance was decreased, indicating enhanced hepatic insulin sensitivity, which was not observed in males. Plasma leptin was increased only in the Reduced males at 12 months compared to Control and Restricted males, which was not observed in females. Compared to Controls, leptin, ghrelin, and adiponectin were unaltered in the Restricted males and females, suggesting that at 12 months of age the reduction in body weight in the Restricted offspring is not a consequence of circulating adipokines. Skeletal muscle PGC-1α levels were unaltered in 12-month-old male and female rats, which indicate improvements in lean muscle mass by 12 months of age. In summary, sex strongly impacts the cardiometabolic effects of growth restriction in 12-month-old rats and it is females who are at particular risk of developing long-term hypertension following growth restriction.
  • Item
    Thumbnail Image
    The Role of Histamine in the Retina: Studies on the Hdc Knockout Mouse
    Greferath, U ; Vessey, KA ; Jobling, AI ; Mills, SA ; Bui, BV ; He, Z ; Nag, N ; Ohtsu, H ; Fletcher, EL ; Kihara, AH (PUBLIC LIBRARY SCIENCE, 2014-12-29)
    The role of histamine in the retina is not well understood, despite it regulating a number of functions within the brain, including sleep, feeding, energy balance, and anxiety. In this study we characterized the structure and function of the retina in mice that lacked expression of the rate limiting enzyme in the formation of histamine, histidine decarboxylase (Hdc-/- mouse). Using laser capture microdissection, Hdc mRNA expression was assessed in the inner and outer nuclear layers of adult C57Bl6J wildtype (WT) and Hdc(-/-)-retinae. In adult WT and Hdc(-/-)-mice, retinal fundi were imaged, retinal structure was assessed using immunocytochemistry and function was probed by electroretinography. Blood flow velocity was assessed by quantifying temporal changes in the dynamic fluorescein angiography in arterioles and venules. In WT retinae, Hdc gene expression was detected in the outer nuclear layer, but not the inner nuclear layer, while the lack of Hdc expression was confirmed in the Hdc-/- retina. Preliminary examination of the fundus and retinal structure of the widely used Hdc-/- mouse strain revealed discrete lesions across the retina that corresponded to areas of photoreceptor abnormality reminiscent of the rd8 (Crb1) mutation. This was confirmed after genotyping and the strain designated Hdcrd8/rd8. In order to determine the effect of the lack of Hdc-alone on the retina, Hdc-/- mice free of the Crb1 mutation were bred. Retinal fundi appeared normal in these animals and there was no difference in retinal structure, macrogliosis, nor any change in microglial characteristics in Hdc-/- compared to wildtype retinae. In addition, retinal function and retinal blood flow dynamics showed no alterations in the Hdc-/- retina. Overall, these results suggest that histamine plays little role in modulating retinal structure and function.
  • Item
    Thumbnail Image
    Studying Age-Related Macular Degeneration Using Animal Models
    Fletcher, EL ; Jobling, AI ; Greferath, U ; Mills, SA ; Waugh, M ; Ho, T ; de Iongh, RU ; Phipps, JA ; Vessey, KA (LIPPINCOTT WILLIAMS & WILKINS, 2014-08)
    Over the recent years, there have been tremendous advances in our understanding of the genetic and environmental factors associated with the development of age-related macular degeneration (AMD). Examination of retinal changes in various animals has aided our understanding of the pathogenesis of the disease. Notably, mouse strains, carrying genetic anomalies similar to those affecting humans, have provided a foundation for understanding how various genetic risk factors affect retinal integrity. However, to date, no single mouse strain that develops all the features of AMD in a progressive age-related manner has been identified. In addition, a mutation present in some background strains has clouded the interpretation of retinal phenotypes in many mouse strains. The aim of this perspective was to describe how animals can be used to understand the significance of each sign of AMD, as well as key genetic risk factors.
  • Item
    Thumbnail Image
    Inner retinal change in a novel rd1-FTL mouse model of retinal degeneration
    Greferath, U ; Anderson, EE ; Jobling, AI ; Vessey, KA ; Martinez, G ; de Iongh, RU ; Kalloniatis, M ; Fletcher, EL (FRONTIERS MEDIA SA, 2015-07-29)
    While photoreceptor loss is the most devastating result of inherited retinal degenerations such as retinitis pigmentosa, inner retinal neurons also undergo significant alteration. Detailing these changes has become important as many vision restorative therapies target the remaining neurons. In this study, the rd1-Fos-Tau-LacZ (rd1-FTL) mouse model was used to explore inner retinal change at a late stage of retinal degeneration, after the loss of photoreceptor nuclei. The rd1-FTL model carries a mutation in the phosphodiesterase gene, Pde6b, and an axonally targeted transgenic beta galactosidase reporter system under the control of the c-fos promoter. Retinae of transgenic rd1-FTL mice and control FTL animals aged 2-12 months were processed for indirect fluorescence immunocytochemistry. At 2 months of age, a time when the majority of photoreceptor nuclei are lost, there was negligible c-fos reporter (FTL) expression, however, from 4 months, reporter expression was observed to increase within subpopulations of amacrine and ganglion cells within the central retina. These areas of inner retinal FTL expression coincided with regions that contained aberrant Müller cells. Specifically, these cells exhibited reduced glutamine synthetase and Kir4.1 immunolabelling, whilst showing evidence of proliferative gliosis (increased cyclinD1 and glial fibrillary acidic protein expression). These changes were limited to distinct regions where cone photoreceptor terminals were absent. Overall, these results highlight that distinct areas of the rd1-FTL central retina undergo significant glial alterations after cone photoreceptor loss. These areas coincide with up-regulation of the c-fos reporter in the inner retina, which may represent a change in neuronal function/plasticity. The rd1-FTL mouse is a useful model system to probe changes that occur in the inner retina at later stages of retinal degeneration.
  • Item
    Thumbnail Image
    Changes in morphology of retinal ganglion cells with eccentricity in retinal degeneration
    Anderson, EE ; Greferath, U ; Fletcher, EL (SPRINGER, 2016-05)
    Ganglion cells are the output neurons of the retina and are known to remodel during the subtle plasticity changes that occur following the death of photoreceptors in inherited retinal degeneration. We examine the influence of retinal eccentricity on anatomical remodelling and ganglion cell morphology well after photoreceptor loss. Rd1 mice that have a mutation in the β subunit of phosphodiesterase 6 were used as a model of retinal degeneration and gross remodelling events were examined by processing serial sections for immunocytochemistry. Retinal wholemounts from rd1-Thy1 and control Thy1 mice that contained a fluorescent protein labelling a subset of ganglion cells were processed for immunohistochemistry at 11 months of age. Ganglion cells were classified based on their soma size, dendritic field size and dendritic branching pattern and their dendritic fields were analysed for their length, area and quantity of branching points. Overall, more remodelling was found in the central compared with the peripheral retina. In addition, the size and complexity of A2, B1, C1 and D type ganglion cells located in the central region of the retina decreased. We propose that the changes in ganglion cell morphology are correlated with remodelling events in these regions and impact the function of retinal circuitry in the degenerated retina.
  • Item
    Thumbnail Image
    Retinal Changes in an ATP-Induced Model of Retinal Degeneration
    Aplin, FP ; Vessey, KA ; Luu, CD ; Guymer, RH ; Shepherd, RK ; Fletcher, EL (FRONTIERS MEDIA SA, 2016-04-29)
    In rodents and felines, intravitreal administration of adenosine triphosphate (ATP) has been shown to induce photoreceptor death providing a tractable model of retinal degeneration in these species. This study investigated the long term effects of photoreceptor loss in an ATP induced feline model of retinal degeneration. Six normal sighted felines were unilaterally blinded using intravitreal ATP injections and assessed using electroretinography (ERG) and optical coherence tomography (OCT). At 30 h (n = 3) or 12 weeks (n = 3) post-injection, the animals were euthanized and the eyes enucleated. Retinae were sectioned and labeled using immunohistochemistry for markers of cell death, neural remodeling and gliosis. Ongoing cell death and retinal degeneration was observed in the outer retina at both 30 h and 12 weeks following unilateral ATP injection. Markers of mid to late-stage retinal remodeling such as cell displacement and aberrant neurite growth were observed in the inner retina at 12 weeks post-injection. Ganglion cells appeared to remain intact in ATP injected eyes. Müller cell gliosis was observed throughout the inner and outer retina, in some parts completely enveloping and/or displacing the surviving neural tissue. Our data suggests that the ATP injected feline retina continues to undergo progressive retinal degeneration and exhibits abnormalities consistent with a description of retinal remodeling commonly seen in other models of retinal degeneration. These findings validate the use of intravitreal ATP injection in feline as a large animal model of retinal degeneration which may aid in development of therapies aiming to restore visual function after photoreceptor degeneration.
  • Item
    No Preview Available
    Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage
    Jobling, AI ; Guymer, RH ; Vessey, KA ; Greferath, U ; Mills, SA ; Brassington, KH ; Luu, CD ; Aung, KZ ; Trogrlic, L ; Plunkett, M ; Fletcher, EL (FEDERATION AMER SOC EXP BIOL, 2015-02)
    Age-related macular degeneration (AMD) is a leading cause of vision loss, characterized by drusen deposits and thickened Bruch's membrane (BM). This study details the capacity of nanosecond laser treatment to reduce drusen and thin BM while maintaining retinal structure. Fifty patients with AMD had a single nanosecond laser treatment session and after 2 yr, change in drusen area was compared with an untreated cohort of patients. The retinal effect of the laser was determined in human and mouse eyes using immunohistochemistry and compared with untreated eyes. In a mouse with thickened BM (ApoEnull), the effect of laser treatment was quantified using electron microscopy and quantitative PCR. In patients with AMD, nanosecond laser treatment reduced drusen load at 2 yr. Retinal structure was not compromised in human and mouse retina after laser treatment, with only a discrete retinal pigment epithelium (RPE) injury, and limited mononuclear cell response observed. BM was thinned in the ApoEnull mouse 3 mo after treatment (ApoEnull treated 683 ± 38 nm, ApoEnull untreated 890 ± 60 nm, C57Bl6J 606 ± 43 nm), with the expression of matrix metalloproteinase-2 and -3 increased (>260%). Nanosecond laser resolved drusen independent of retinal damage and improved BM structure, suggesting this treatment has the potential to reduce AMD progression.
  • Item
    Thumbnail Image
    Stimulation of a Suprachoroidal Retinal Prosthesis Drives Cortical Responses in a Feline Model of Retinal Degeneration
    Aplin, FP ; Fletcher, EL ; Luu, CD ; Vessey, KA ; Allen, PJ ; Guymer, RH ; Shepherd, RK ; Shivdasani, MN (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2016-10)
    PURPOSE: Retinal prostheses have emerged as a promising technology to restore vision in patients with severe photoreceptor degeneration. To better understand how neural degeneration affects the efficacy of electronic implants, we investigated the function of a suprachoroidal retinal implant in a feline model. METHODS: Unilateral retinal degeneration was induced in four adult felines by intravitreal injection of adenosine triphosphate (ATP). Twelve weeks post injection, animals received suprachoroidal electrode array implants in each eye, and responses to electrical stimulation were obtained using multiunit recordings from the visual cortex. Histologic measurements of neural and glial changes in the retina at the implant site were correlated with cortical thresholds from individual stimulating electrodes. RESULTS: Adenosine triphosphate-injected eyes displayed changes consistent with mid-to-late stage retinal degeneration and remodeling. A significant increase in electrical charge was required to induce a cortical response from stimulation of the degenerated retina compared to that in the fellow control eye. Spatial and temporal characteristics of the electrically evoked cortical responses were no different between eyes. Individual electrode thresholds varied in both the control and the ATP-injected eyes and were correlated with ganglion cell density. In ATP-injected eyes, cortical threshold was also independently correlated with an increase in the extent of retinal gliosis. CONCLUSIONS: These data suggest that even when ganglion cell density remains unaffected, glial changes in the retina following degeneration can influence the efficacy of suprachoroidal electrical stimulation. A better understanding of how glial change impacts retinal prosthesis function may help to further the optimization of retinal implants.
  • Item
    Thumbnail Image
    Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain
    Ho, T ; Jobling, AI ; Greferath, U ; Chuang, T ; Ramesh, A ; Fletcher, EL ; Vessey, KA (FRONTIERS MEDIA SA, 2015-10-06)
    Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons.