Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    BDNF VAL66MET polymorphism and memory decline across the spectrum of Alzheimer's disease
    Lim, YY ; Laws, SM ; Perin, S ; Pietrzak, RH ; Fowler, C ; Masters, CL ; Maruff, P (WILEY, 2021-06)
    The brain-derived neurotrophic factor (BDNF) Val66Met (rs6265) polymorphism has been shown to moderate the extent to which memory decline manifests in preclinical Alzheimer's disease (AD). To date, no study has examined the relationship between BDNF and memory in individuals across biologically confirmed AD clinical stages (i.e., Aβ+). We aimed to understand the effect of BDNF on episodic memory decline and clinical disease progression over 126 months in individuals with preclinical, prodromal and clinical AD. Participants enrolled in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study who were Aβ + (according to positron emission tomography), and cognitively normal (CN; n = 238), classified as having mild cognitive impairment (MCI; n = 80), or AD (n = 66) were included in this study. Cognition was evaluated at 18 month intervals using an established episodic memory composite score over 126 months. We observed that in Aβ + CNs, Met66 was associated with greater memory decline with increasing age and were 1.5 times more likely to progress to MCI/AD over 126 months. In Aβ + MCIs, there was no effect of Met66 on memory decline or on disease progression to AD over 126 months. In Aβ + AD, Val66 homozygotes showed greater memory decline, while Met66 carriers performed at a constant and very impaired level. Our current results illustrate the importance of time and disease severity to clinicopathological models of the role of BDNF Val66Met in memory decline and AD clinical progression. Specifically, the effect of BDNF on memory decline is greatest in preclinical AD and reduces as AD clinical disease severity increases.
  • Item
    Thumbnail Image
    Plasma p-tau181/Aβ1-42 ratio predicts Aβ-PET status and correlates with CSF-p-tau181/Aβ1-42 and future cognitive decline
    Fowler, CJ ; Stoops, E ; Rainey-Smith, SR ; Vanmechelen, E ; Vanbrabant, J ; Dewit, N ; Mauroo, K ; Maruff, P ; Rowe, CC ; Fripp, J ; Li, Q-X ; Bourgeat, P ; Collins, SJ ; Martins, RN ; Masters, CL ; Doecke, JD (WILEY, 2022)
    BACKGROUND: In Alzheimer's disease (AD), plasma amyloid beta (Aβ)1-42 and phosphorylated tau (p-tau) predict high amyloid status from Aβ positron emission tomography (PET); however, the extent to which combination of these plasma assays can predict remains unknown. METHODS: Prototype Simoa assays were used to measure plasma samples from participants who were either cognitively normal (CN) or had mild cognitive impairment (MCI)/AD in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. RESULTS: The p-tau181/Aβ1-42 ratio showed the best prediction of Aβ-PET across all participants (area under the curve [AUC] = 0.905, 95% confidence interval [CI]: 0.86-0.95) and in CN (AUC = 0.873; 0.80-0.94), and symptomatic (AUC = 0.908; 0.82-1.00) adults. Plasma p-tau181/Aβ1-42 ratio correlated with cerebrospinal fluid (CSF) p-tau181 (Elecsys, Spearman's ρ = 0.74, P < 0.0001) and predicted abnormal CSF Aβ (AUC = 0.816; 0.74-0.89). The p-tau181/Aβ1-42 ratio also predicted future rates of cognitive decline assessed by AIBL Preclinical Alzheimer Cognitive Composite or Clinical Dementia Rating Sum of Boxes (P < 0.0001). DISCUSSION: Plasma p-tau181/Aβ1-42 ratio predicted both Aβ-PET status and cognitive decline, demonstrating potential as both a diagnostic aid and as a screening and prognostic assay for preclinical AD trials.
  • Item
    No Preview Available
    Leukocyte surface biomarkers implicate deficits of innate immunity in sporadic Alzheimer's disease
    Huang, X ; Li, Y ; Fowler, C ; Doecke, JD ; Lim, YY ; Drysdale, C ; Zhang, V ; Park, K ; Trounson, B ; Pertile, K ; Rumble, R ; Pickering, JW ; Rissman, RA ; Sarsoza, F ; Abdel-Latif, S ; Lin, Y ; Dore, V ; Villemagne, V ; Rowe, CC ; Fripp, J ; Martins, R ; Wiley, JS ; Maruff, P ; Mintzer, JE ; Masters, CL ; Gu, BJ (WILEY, 2023-05)
    INTRODUCTION: Blood-based diagnostics and prognostics in sporadic Alzheimer's disease (AD) are important for identifying at-risk individuals for therapeutic interventions. METHODS: In three stages, a total of 34 leukocyte antigens were examined by flow cytometry immunophenotyping. Data were analyzed by logistic regression and receiver operating characteristic (ROC) analyses. RESULTS: We identified leukocyte markers differentially expressed in the patients with AD. Pathway analysis revealed a complex network involving upregulation of complement inhibition and downregulation of cargo receptor activity and Aβ clearance. A proposed panel including four leukocyte markers - CD11c, CD59, CD91, and CD163 - predicts patients' PET Aβ status with an area under the curve (AUC) of 0.93 (0.88 to 0.97). CD163 was the top performer in preclinical models. These findings have been validated in two independent cohorts. CONCLUSION: Our finding of changes on peripheral leukocyte surface antigens in AD implicates the deficit in innate immunity. Leukocyte-based biomarkers prove to be both sensitive and practical for AD screening and diagnosis.
  • Item
    Thumbnail Image
    Plasma A beta 42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer's disease continuum: A cross-sectional and longitudinal study in the AIBL cohort
    Chatterjee, P ; Pedrini, S ; Doecke, JD ; Thota, R ; Villemagne, VL ; Dore, V ; Singh, AK ; Wang, P ; Rainey-Smith, S ; Fowler, C ; Taddei, K ; Sohrabi, HR ; Molloy, MP ; Ames, D ; Maruff, P ; Rowe, CC ; Masters, CL ; Martins, RN (WILEY, 2023-04-01)
    Introduction: Plasma amyloid beta (Aβ)1-42/Aβ1-40 ratio, phosphorylated-tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) are putative blood biomarkers for Alzheimer's disease (AD). However, head-to-head cross-sectional and longitudinal comparisons of the aforementioned biomarkers across the AD continuum are lacking. Methods: Plasma Aβ1-42, Aβ1-40, p-tau181, GFAP, and NfL were measured utilizing the Single Molecule Array (Simoa) platform and compared cross-sectionally across the AD continuum, wherein Aβ-PET (positron emission tomography)–negative cognitively unimpaired (CU Aβ−, n = 81) and mild cognitive impairment (MCI Aβ−, n = 26) participants were compared with Aβ-PET–positive participants across the AD continuum (CU Aβ+, n = 39; MCI Aβ+, n = 33; AD Aβ+, n = 46) from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) cohort. Longitudinal plasma biomarker changes were also assessed in MCI (n = 27) and AD (n = 29) participants compared with CU (n = 120) participants. In addition, associations between baseline plasma biomarker levels and prospective cognitive decline and Aβ-PET load were assessed over a 7 to 10-year duration. Results: Lower plasma Aβ1-42/Aβ1-40 ratio and elevated p-tau181 and GFAP were observed in CU Aβ+, MCI Aβ+, and AD Aβ+, whereas elevated plasma NfL was observed in MCI Aβ+ and AD Aβ+, compared with CU Aβ− and MCI Aβ−. Among the aforementioned plasma biomarkers, for models with and without AD risk factors (age, sex, and apolipoprotein E (APOE) ε4 carrier status), p-tau181 performed equivalent to or better than other biomarkers in predicting a brain Aβ−/+ status across the AD continuum. However, for models with and without the AD risk factors, a biomarker panel of Aβ1-42/Aβ1-40, p-tau181, and GFAP performed equivalent to or better than any of the biomarkers alone in predicting brain Aβ−/+ status across the AD continuum. Longitudinally, plasma Aβ1-42/Aβ1-40, p-tau181, and GFAP were altered in MCI compared with CU, and plasma GFAP and NfL were altered in AD compared with CU. In addition, lower plasma Aβ1-42/Aβ1-40 and higher p-tau181, GFAP, and NfL were associated with prospective cognitive decline and lower plasma Aβ1-42/Aβ1-40, and higher p-tau181 and GFAP were associated with increased Aβ-PET load prospectively. Discussion: These findings suggest that plasma biomarkers are altered cross-sectionally and longitudinally, along the AD continuum, and are prospectively associated with cognitive decline and brain Aβ-PET load. In addition, although p-tau181 performed equivalent to or better than other biomarkers in predicting an Aβ−/+ status across the AD continuum, a panel of biomarkers may have superior Aβ−/+ status predictive capability across the AD continuum. HIGHLIGHTS: Area under the curve (AUC) of p-tau181 ≥ AUC of Aβ42/40, GFAP, NfL in predicting PET Aβ−/+ status (Aβ−/+). AUC of Aβ42/40+p-tau181+GFAP panel ≥ AUC of Aβ42/40/p-tau181/GFAP/NfL for Aβ−/+. Longitudinally, Aβ42/40, p-tau181, and GFAP were altered in MCI versus CU. Longitudinally, GFAP and NfL were altered in AD versus CU. Aβ42/40, p-tau181, GFAP, and NfL are associated with prospective cognitive decline. Aβ42/40, p-tau181, and GFAP are associated with increased PET Aβ load prospectively.
  • Item
    Thumbnail Image
    Identification of Leukocyte Surface P2X7 as a Biomarker Associated with Alzheimer's Disease
    Li, Y ; Huang, X ; Fowler, C ; Lim, YY ; Laws, SM ; Faux, N ; Doecke, JD ; Trounson, B ; Pertile, K ; Rumble, R ; Dore, V ; Villemagne, VL ; Rowe, CC ; Wiley, JS ; Maruff, P ; Masters, CL ; Gu, BJ (MDPI, 2022-07)
    Alzheimer's disease (AD) has shown altered immune responses in the periphery. We studied P2X7 (a proinflammatory receptor and a scavenger receptor) and two integrins, CD11b and CD11c, on the surface of circulating leukocytes and analysed their associations with Aβ-PET, brain atrophy, neuropsychological assessments, and cerebrospinal fluid (CSF) biomarkers. Total 287 age-matched, sex-balanced participants were recruited in a discovery cohort and two validation cohorts through the AIBL study and studied using tri-colour flow cytometry. Our results demonstrated reduced expressions of P2X7, CD11b, and CD11c on leukocytes, particularly monocytes, in Aβ +ve cases compared with Aβ -ve controls. P2X7 and integrin downregulation was observed at pre-clinical stage of AD and stayed low throughout disease course. We further constructed a polygenic risk score (PRS) model based on 12 P2RX7 risk alleles to assess the genetic impact on P2X7 function in AIBL and ADNI cohorts. No significant association was identified between the P2RX7 gene and AD, indicating that P2X7 downregulation in AD is likely caused by environmental changes rather than genetic factors. In conclusion, the downregulation of P2X7 and integrins at pre-clinical stage of AD indicates altered pro-inflammatory responses, phagocytic functions, and migrating capabilities of circulating monocytes in early AD pathogenesis. Our study not only improves our understanding of peripheral immune involvement in early stage of AD but also provides more insights into novel biomarker development, diagnosis, and prognosis of AD.
  • Item
    No Preview Available
    No Influence of Age-Related Hearing Loss on Brain Amyloid-β
    Sarant, JZ ; Harris, DC ; Busby, PA ; Fowler, C ; Fripp, J ; Masters, CL ; Maruff, P ; Bendlin, B (IOS PRESS, 2022)
    BACKGROUND: Hearing loss is independently associated with a faster rate of cognitive decline in older adults and has been identified as a modifiable risk factor for dementia. The mechanism for this association is unknown, and there has been limited exploration of potential casual pathology. OBJECTIVE: Our objective was to investigate whether there was an association between degree of audiometrically measured hearing loss (HL) and brain amyloid-β (Aβ) in a pre-clinical sample. METHODS: Participants of the Australian Imaging and Biomarker Longitudinal Study (AIBL; n = 143) underwent positron emission tomography (PET) imaging and objective measurement of hearing thresholds within 5 years of imaging, as well as cognitive assessment within 2 years of imaging in this observational cohort study. RESULTS: With one exception, study participants who had cognitive assessments within 2 years of their PET imaging (n = 113) were classified as having normal cognition. There was no association between cognitive scores and degree of hearing loss, or between cognitive scores and Aβ load. No association between HL and Aβ load was found once age was controlled for. As previously reported, positive Apolipoprotein E4 (APOE4) carrier status increased the risk of being Aβ positive (p = 0.002). CONCLUSION: Degree of HL was not associated with positive Aβ status.
  • Item
    Thumbnail Image
    Higher Coffee Consumption Is Associated With Slower Cognitive Decline and Less Cerebral Aβ-Amyloid Accumulation Over 126 Months: Data From the Australian Imaging, Biomarkers, and Lifestyle Study
    Gardener, SL ; Rainey-Smith, SR ; Villemagne, VL ; Fripp, J ; Dore, V ; Bourgeat, P ; Taddei, K ; Fowler, C ; Masters, CL ; Maruff, P ; Rowe, CC ; Ames, D ; Martins, RN ; AIBL, I (FRONTIERS MEDIA SA, 2021-11-19)
    Background: Worldwide, coffee is one of the most popular beverages consumed. Several studies have suggested a protective role of coffee, including reduced risk of Alzheimer's disease (AD). However, there is limited longitudinal data from cohorts of older adults reporting associations of coffee intake with cognitive decline, in distinct domains, and investigating the neuropathological mechanisms underpinning any such associations. Methods: The aim of the current study was to investigate the relationship between self-reported habitual coffee intake, and cognitive decline assessed using a comprehensive neuropsychological battery in 227 cognitively normal older adults from the Australian Imaging, Biomarkers, and Lifestyle (AIBL) study, over 126 months. In a subset of individuals, we also investigated the relationship between habitual coffee intake and cerebral Aβ-amyloid accumulation (n = 60) and brain volumes (n = 51) over 126 months. Results: Higher baseline coffee consumption was associated with slower cognitive decline in executive function, attention, and the AIBL Preclinical AD Cognitive Composite (PACC; shown reliably to measure the first signs of cognitive decline in at-risk cognitively normal populations), and lower likelihood of transitioning to mild cognitive impairment or AD status, over 126 months. Higher baseline coffee consumption was also associated with slower Aβ-amyloid accumulation over 126 months, and lower risk of progressing to "moderate," "high," or "very high" Aβ-amyloid burden status over the same time-period. There were no associations between coffee intake and atrophy in total gray matter, white matter, or hippocampal volume. Discussion: Our results further support the hypothesis that coffee intake may be a protective factor against AD, with increased coffee consumption potentially reducing cognitive decline by slowing cerebral Aβ-amyloid accumulation, and thus attenuating the associated neurotoxicity from Aβ-amyloid-mediated oxidative stress and inflammatory processes. Further investigation is required to evaluate whether coffee intake could be incorporated as a modifiable lifestyle factor aimed at delaying AD onset.
  • Item
    Thumbnail Image
    Learning deficit in cognitively normal APOE ε4 carriers with LOW β-amyloid
    Lim, YY ; Baker, JE ; Mills, A ; Bruns, L ; Fowler, C ; Fripp, J ; Rainey-Smith, SR ; Ames, D ; Masters, CL ; Maruff, P (WILEY, 2021)
    INTRODUCTION: In cognitively normal (CN) adults, increased rates of amyloid beta (Aβ) accumulation can be detected in low Aβ (Aβ-) apolipoprotein E (APOE) ε4 carriers. We aimed to determine the effect of ε4 on the ability to benefit from experience (ie, learn) in Aβ- CNs. METHODS: Aβ- CNs (n = 333) underwent episodic memory assessments every 18 months for 108 months. A subset (n = 48) completed the Online Repeatable Cognitive Assessment-Language Learning Test (ORCA-LLT) over 6 days. RESULTS: Aβ- ε4 carriers showed significantly lower rates of improvement on episodic memory over 108 months compared to non-carriers (d = 0.3). Rates of learning on the ORCA-LLT were significantly slower in Aβ- ε4 carriers compared to non-carriers (d = 1.2). DISCUSSION: In Aβ- CNs, ε4 is associated with a reduced ability to benefit from experience. This manifested as reduced practice effects (small to moderate in magnitude) over 108 months on the episodic memory composite, and a learning deficit (large in magnitude) over 6 days on the ORCA-LLT. Alzheimer's disease (AD)-related cognitive abnormalities can manifest before preclinical AD thresholds.
  • Item
    Thumbnail Image
    Association of β-Amyloid Level, Clinical Progression, and Longitudinal Cognitive Change in Normal Older Individuals
    Van der Kall, LM ; Thanh, T ; Burnham, SC ; Dore, V ; Mulligan, RS ; Bozinovski, S ; Lamb, F ; Bourgeat, P ; Fripp, J ; Schultz, S ; Lim, YY ; Laws, SM ; Ames, D ; Fowler, C ; Rainey-Smith, SR ; Martins, RN ; Salvado, O ; Robertson, J ; Maruff, P ; Masters, CL ; Villemagne, VL ; Rowe, CC (LIPPINCOTT WILLIAMS & WILKINS, 2021-02-02)
    OBJECTIVE: To determine the effect of β-amyloid (Aβ) level on progression risk to mild cognitive impairment (MCI) or dementia and longitudinal cognitive change in cognitively normal (CN) older individuals. METHODS: All CN from the Australian Imaging Biomarkers and Lifestyle study with Aβ PET and ≥3 years follow-up were included (n = 534; age 72 ± 6 years; 27% Aβ positive; follow-up 5.3 ± 1.7 years). Aβ level was divided using the standardized 0-100 Centiloid scale: <15 CL negative, 15-25 CL uncertain, 26-50 CL moderate, 51-100 CL high, >100 CL very high, noting >25 CL approximates a positive scan. Cox proportional hazards analysis and linear mixed effect models were used to assess risk of progression and cognitive decline. RESULTS: Aβ levels in 63% were negative, 10% uncertain, 10% moderate, 14% high, and 3% very high. Fifty-seven (11%) progressed to MCI or dementia. Compared to negative Aβ, the hazard ratio for progression for moderate Aβ was 3.2 (95% confidence interval [CI] 1.3-7.6; p < 0.05), for high was 7.0 (95% CI 3.7-13.3; p < 0.001), and for very high was 11.4 (95% CI 5.1-25.8; p < 0.001). Decline in cognitive composite score was minimal in the moderate group (-0.02 SD/year, p = 0.05), while the high and very high declined substantially (high -0.08 SD/year, p < 0.001; very high -0.35 SD/year, p < 0.001). CONCLUSION: The risk of MCI or dementia over 5 years in older CN is related to Aβ level on PET, 5% if negative vs 25% if positive but ranging from 12% if 26-50 CL to 28% if 51-100 CL and 50% if >100 CL. This information may be useful for dementia risk counseling and aid design of preclinical AD trials.
  • Item
    Thumbnail Image
    Risk prediction of late-onset Alzheimer's disease implies an oligogenic architecture
    Zhang, Q ; Sidorenko, J ; Couvy-Duchesne, B ; Marioni, RE ; Wright, MJ ; Goate, AM ; Marcora, E ; Huang, K-L ; Porter, T ; Laws, SM ; Sachdev, PS ; Mather, KA ; Armstrong, NJ ; Thalamuthu, A ; Brodaty, H ; Yengo, L ; Yang, J ; Wray, NR ; McRae, AF ; Visscher, PM (NATURE RESEARCH, 2020-09-23)
    Genetic association studies have identified 44 common genome-wide significant risk loci for late-onset Alzheimer’s disease (LOAD). However, LOAD genetic architecture and prediction are unclear. Here we estimate the optimal P-threshold (Poptimal) of a genetic risk score (GRS) for prediction of LOAD in three independent datasets comprising 676 cases and 35,675 family history proxy cases. We show that the discriminative ability of GRS in LOAD prediction is maximised when selecting a small number of SNPs. Both simulation results and direct estimation indicate that the number of causal common SNPs for LOAD may be less than 100, suggesting LOAD is more oligogenic than polygenic. The best GRS explains approximately 75% of SNP-heritability, and individuals in the top decile of GRS have ten-fold increased odds when compared to those in the bottom decile. In addition, 14 variants are identified that contribute to both LOAD risk and age at onset of LOAD.